Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at The Scripps Research Institute Make Strides in Addressing Mysteries of Ozone in the Human Body

28.02.2003


In what is a first for biology, a team of investigators at The Scripps Research Institute (TSRI) is reporting that the human body makes ozone.

Led by TSRI President Richard Lerner, Ph.D. and Associate Professor in the Department of Chemistry Paul Wentworth, Jr, Ph.D., who made the original discovery, the team has been slowly gathering evidence over the last few years that the human body produces the reactive gas—most famous as the ultraviolet ray-absorbing component of the ozone layer—as part of a mechanism to protect it from bacteria and fungi.

"Ozone was a big surprise," says TSRI Professor Bernard Babior, M.D., Ph.D. "But it seems that biological systems manufacture ozone, and that ozone has an effect on those biological systems."



Now, in an important development in this unfolding story, Babior, Wentworth, and their TSRI colleagues report in an upcoming issue of the journal Proceedings of the National Academy of Sciences that the ozone appears to be produced in a process involving human immune cells known as neutrophils and human immune proteins known as antibodies.

"It is a tremendously efficient chemical and biological process," says Wentworth, who adds that the presence of ozone in the human body may be linked to inflammation, and therefore this work may have tremendous ramifications for treating inflammatory diseases.

The Ozone Hole in Each One of Us

Ozone is a reactive form of oxygen that exists naturally as a trace gas in the atmosphere. It is perhaps best known for its crucial role absorbing ultraviolet radiation in the stratosphere, where it is concentrated in a so-called ozone layer, protecting life on earth from solar radiation. Ozone is also a familiar component of air in industrial and urban settings where the gas is a hazardous component of smog. However, ozone has never before been detected in biology.

Two years ago, Lerner and Wentworth demonstrated that antibodies are able to produce ozone and other chemical oxidants when they are fed a reactive form of oxygen called singlet oxygen. And late last year, Lerner, Wentworth, and Babior demonstrated that the oxidants produced by antibodies can destroy bacteria by poking holes in their cell walls.

This was a completely unexpected development, since for the last 100 years, immunologists believed that antibodies—proteins secreted into the blood by the immune system—acted only to recognize foreign pathogens and attract lethal "effector" immune cells to the site of infection.

Questions, Answers, and More Questions

The question still remained, however, as to how the antibodies were making the ozone. The TSRI team knew that in order to make the ozone and other highly reactive oxidants, the antibodies had to use a starting material known as singlet oxygen, a rare, excited form of oxygen.

Now Babior and Wentworth believe they have found where the singlet oxygen comes from—one of the effector immune cells called neutrophils which are little cellular factories that produce singlet oxygen and other oxidants. During an immune response, the neutrophils engulf and destroy bacteria and fungi by blasting them with these oxidants.

The work of the TSRI scientists suggests that the antibacterial effect of neutrophils is enhanced by antibodies. In addition to killing the bacteria themselves, the neutrophils feed singlet oxygen to the antibodies, which convert it into ozone, adding weapons to the assault.

"This is really something new, and there are a million questions [that follow]," says Babior. "What does the ozone do to the body’s proteins and nucleic acids? Can neutrophils make ozone without the antibodies? Is ozone made by other cells? How long does ozone last in the body? And, most importantly, how will these discoveries help to cure disease?"

The research team continues to investigate.

The article, "Investigating antibody-catalyzed ozone generation by human neutrophils," is authored by Bernard M. Babior, Cindy Takeuchi, Julie Ruedi, Abel Gutierrez, and Paul Wentworth, Jr. The article will be available online this week at: http://www.pnas.org/cgi/doi/10.1073/pnas.0530 251100, and it will be published in an upcoming issue of the journal Proceedings of the National Academy of Sciences .

The research was funded by the National Institutes of Health (NIH), through research grants and through a training grant; and by The Skaggs Institute for Chemical Biology.


For more information contact:
Jason Bardi
10550 North Torrey Pines Road
La Jolla, California 92037

Tel: 858.784.9254
Fax: 858.784.8118
jasonb@scripps.edu

Jason Bardi | Scripps
Further information:
http://www.pnas.org/cgi/content/abstract/0530251100v1

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>