Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne researchers create powerful stem cells from blood

25.02.2003


May revolutionize medical research and transplantation



The particularly powerful – and very scarce – flexible forms of stem cells needed for medical research and treatment may now be both plentiful and simple to produce, with a new technology developed at the U.S. Department of Energy’s Argonne National Laboratory – and the source is as close as your own bloodstream.

These flexible stem cells, able to morph into a variety of cell types, are called “pluripotent,” and before this Argonne research, they have been found only in fetal tissue, which is limited, and in bone marrow, which is difficult to collect. Pluripotent stem cells are important because they can generate all types of tissues found in the body, and the Argonne-developed technology can produce them from adult blood cells.


The finding may eventually offer researchers a practical alternative to the use of embryonic stem cells for research, drug discovery, and transplantation.

Argonne scientist Eliezer Huberman and his colleagues, Yong Zhao and David Greene, examined adult monocytes, a type of white blood cells that act as precursors to macrophages. The researchers found that when monocytes were exposed to a growth factor, they created a set of pluripotent stem cells. After cultivating the stem cells, the scientists were able to make the cells “differentiate” into nerve, liver, and immune system tissue by delivering more growth factors.

“Because of its great promise in medicine, I’m prouder of this work than of anything else I’ve done,” Huberman said.

The research is being published in the Proceedings of the National Academy of Sciences.

Storing the precursor cells in liquid nitrogen had no effect on their differentiation later. Because monocytes can be easily gathered from a patient’s own blood supply, the researchers suggest that treating disease with a genetic match to prevent rejection may be possible in the future.

This means that the material should produce valuable candidates for transplantation therapy, useful to replenish immune cells that have been eradicated by cancer therapy or to replace neuronal tissue damaged during spinal cord injury, stroke, Alzheimer’s or Parkinson’s disease.

Funding for the research is from the National Institutes of Health. The researchers have applied for a patent on the new technology.


The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. The University of Chicago operates Argonne as part of the U.S. Department of Energy’s national laboratory system.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>