Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eye can self-correct some optical faults, Cornell study reveals

18.02.2003


While the vision-impaired Hubble Space Telescope needed optical doctoring from shuttle astronauts, vision researchers back on Earth were wondering if the human eye was clever enough to fix itself.

Now a neurobiology study at Cornell University suggests that internal parts of the eye indeed can compensate for less-than-perfect conditions in other parts -- either developmentally (during the lifetime of one individual) or genetically (over many generations).

Results of the study, "Internal compensation for corneal astigmatism and high-order aberrations of the eye," were reported to the fourth International Congress of Wavefront Sensing and Aberration-free Refraction Correction, Feb. 14-16 in San Francisco, by Howard C. Howland, Jennifer E. Kelly and Toshifumi Mihashi. Howland is a Cornell professor of neurobiology and behavior and director of the university’s Developmental Vision Laboratory; Mihashi is the chief scientist at the research institute of the Tokyo-based Topcon Corp., manufacturer of a wavefront analyzer used in the study; and Kelly is a Cornell senior who used the wavefront analyzer as part of her honors thesis by testing the vision of 20 other undergraduate students.



Wavefront analysis is a recently developed technique for "seeing," with computer-based mathematical simulation, more precisely what the eye perceives. A beam of harmless laser light shines through the eye’s optics (the transparent cornea, which begins to focus light, and the lens, which completes the focusing) toward the retina, where millions of photoreceptor cones and rods line the rear surface of the eye.

As the light rays are reflected back through the internal optics and exit the eye, the wavefront analyzer measures and computes deviations from a perfectly formed light beam or test pattern a short distance in front of the eye. Light rays exiting an optically perfect eye should be perfectly parallel, but irregularities in the thickness or shape of the cornea or a less-than-perfect lens can cause the exiting light rays to become nonparallel. A test pattern (produced by light passing though regularly spaced lenslets to form a grid, something like the lines on graph paper) should form a regular array of luminous points in an optically perfect eye, but a distorted pattern can tell the wavefront analyzer a great deal about irregularities in the cornea and lens.

The Cornell study, which was funded, in part, by Topcon Corp., and built upon earlier research from Spanish colleagues, looked for ways the eye might compensate internally for several kinds of optical faults. Among them:

o Corneal astigmatism, which is caused by irregularities in the topography of the cornea and can produce a distorted image;

o lateral coma, a so-called high-order aberration that is caused by the line of sight not being along the axis of symmetry of the eye and produces comet-shaped images of points of light; and

o spherical aberration, also a high order aberration, is what afflicted the Hubble Space Telescope because its main mirror was too flat on the edge. Spherical aberration in the human eye is caused by a spherical-shaped cornea and produces blurring of the retinal image.

Howland, who for more than 20 years has studied the development of vision defects in children, has been particularly interested in the possibility of "feedback loops" by which the brain might direct parts of the eye to change shape and compensate for optical aberrations. Reporting on the wavefront analysis of internal compensation, he says: "We found compensation by internal optics for three kinds of corneal aberrations of the 12 different aberrations we investigated. We found no evidence of developmental compensation for spherical aberration, but we did find some evidence for developmental compensation for corneal astigmatism. We’re beginning to think that compensation for lateral coma is genetic, not developmental."

He comments that all human eyes, even those that manage to produce perfect vision, have some deviations from the optically ideal properties in their constituent parts. "We’re talking about living, biological tissue here. The form and function of anything that’s living is a combination of its genetic background and the environment in which it is born, grows, lives and ages," he says, noting that many optical aberrations become more pronounced with advancing age.

"With a system as complex as vision, where so many things can go wrong, it’s a wonder we can see at all. Now we’re coming to realize," Howland says, "that visual acuity is a result of various component parts ’wanting’ to see better, if you will. They seem to be able to sense aberrations and to change shape and function, to some extent, to produce a better result. Some of this compensation occurs early in life, as our visual system is developing -- and to a lesser degree throughout our lives. Other compensations occurred long before we were born, as our distant ancestors evolved more perfect senses.

"And when our eyes can’t compensate internally," the neurobiologist says, "that’s when we look to those astronauts of the medical world -- the optometrists and ophthalmic surgeons -- to fix what nature couldn’t.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb03/self_correct.hrs.html

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>