Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromatin structure: More folding, more complexity than expected

17.02.2003


New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."



"What we are seeing suggests that there may be machinery, not yet identified, that controls the folding and the movements of enzymes that turn genes on and off," said Andrew Belmont, a professor of cell and structural biology, who is giving a talk on the subject today at the annual meeting of the American Association for the Advancement of Science.

Belmont, who also is a medical doctor, discussed current trends of research on chromatin structure during a session on "The ’New’ Nucleus: Mothership of the Human Genome." Chromatin is a part of a cell’s nucleus that contains nucleic acids and proteins -- the genetic material necessary for cell division. During mitosis, chromatin folds and condenses.


The level of folding, however, is much higher than previously thought, Belmont said, and a lot of the enzyme complexes that work on DNA, for instance to allow gene regulation, have turned out to be surprisingly large.

"In this era of genome sequencing and gene identification, the fundamental question of how DNA folds within the mitotic chromosome and interphase nucleus, and the impact of this folding on gene expression, remains largely unknown," he said.

A startling discovery, unveiled by on-going research based on a technique to study the structure in living cells that Belmont announced in late 1996, is that chromosomes are constantly in motion. They gyrate constantly within their tiny confined territories.

Advances of his own technique allow him to watch as proteins move and come together as single packages as they approach their target receptors to activate a gene.

The genetic-engineering method developed by Belmont uses a specific protein-DNA interaction in which a protein binds to a specific target in DNA without altering chromosomal structure. Naturally occurring green fluorescent protein allows for viewing area in living cells by light microscopy or electron microscopes. The results include visual proof of chromosomal fibers 100 nanometers in diameter during folding and unfolding.

"For several decades, the basic paradigm for studying chromosome structure relied primarily on experimental approaches in which nuclei were exploded and chromosomes fragmented into small, soluble pieces that could be analyzed in the test tube using biochemical techniques," Belmont said. "However, over the past several years, development of novel imaging tools have provided a new window, allowing direct visualization of chromosomes within living cells."

As a result, scientific perspectives on chromosome structure and function have been dramatically altered, he said. "The picture emerging is of a cell nucleus, apparently tranquil, but concealing chromosomes and chromosomal proteins in constant motion and turnover. This highly dynamic behavior results in quasi-stable chromosome architecture poised for rapid response to signals from the cell environment."

A current question is how large, bulky protein complexes that mediate gene transcription can find their targets and gain access to the DNA, he said.

In the February issue of the journal Current Biology, Belmont and Sevinci Memedula of the University of Bucharest suggest that large protein assemblies approach a gene target in a stepwise fashion. Individual sub-units act as pioneers. They open, or remodel, their target for subsequent binding of the larger intact protein complex

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>