Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism controls movement of cell structures

17.02.2003


UI researchers discover new mechanism controlling movement of cell structures



Organelles are compartments and structures inside cells that perform varied and vital functions, including energy production, storage and transportation of important substances and removal of waste products. Normal cellular function requires that organelles be positioned in specific locations in a cell. Thus, movement of the organelles to their appropriate destinations is critical.

A team of University of Iowa researchers has discovered a new mechanism that helps explain how organelles are delivered to the right place at the right time. The research findings appear in the Feb. 16 Nature Advance Online Publication.


Understanding how organelles get to their assigned cellular locations will improve understanding of embryonic development and may have implications for understanding many diseases including cancer and diabetes, said Lois Weisman, Ph.D., UI associate professor of biochemistry and principal investigator of the study.

Weisman and her colleagues made their discovery by studying organelle movement in yeast. The team identified a protein that specifically couples vacuoles (yeast organelles) to the organelle transportation system and also appears to plays a key role in controlling the timing and delivery of the vacuole to its final destination.

Most yeast proteins have direct humans counterparts known as homologs. This similarity makes yeast a good experimental organism because almost everything researchers learn about yeast cells is likely to be applicable to human cells, too. In addition, manipulating and analyzing yeast genes is much easier and faster than working with higher life forms.

The machinery that moves vacuoles in yeast also moves other organelles, as well. One question that interested Weisman and her colleagues was: how can this same mechanism move different organelles to different locations at different times?

The transport system acts like a cable car with motor molecules transporting organelles through the cell along cable-like structures. The protein discovered by the UI team specifically couples vacuoles to a motor molecule. The studies also suggest that when the vacuole arrives at its correct destination, the coupling protein is degraded, which causes the vacuole to be deposited in the right location.

"The protein we have discovered is called Vac17p. We found that it is involved in the specific coupling of vacuoles to the motor protein," Weisman said. "More surprisingly, we also found that regulation of the appearance and disappearance of this protein controls when that organelle moves and where it moves to."

Working with various yeast mutants, Fusheng Tang, Ph.D., UI postdoctoral researcher and lead author of the study, discovered that if the Vac17p protein does not get degraded, then the release mechanism is disrupted and the vacuole is not deposited in the correct cellular location. His research suggests that the controlled assembly and disassembly of the molecular transport complexes is critical for accurate and directed organelle movement.

"We were just trying to figure out how the specific coupling mechanism worked and then we also discovered this protein turnover mechanism, which seems to be critical for depositing the cargo at the right place and time," Weisman said.

Because the organelle transport system in yeast is essentially the same as the system found in higher animals including humans, the researchers believe that regulated disassembly of organelle transportation complexes may be a general mechanism for moving organelles to their final cellular destinations in all cells.



In addition to Weisman and Tang, other UI researchers involved in the study included research assistants, Emily Kauffman, Jennifer Novak and Johnathan Nau, and Natalie Catlett, Ph.D., who was a graduate student in Weisman’s lab.

The research was funded by grants from the National Institutes of Health and the National Science Foundation.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

WRITER: Jennifer Brown, jennifer-l-brown@uiowa.edu
MEDIA CONTACT: Becky Soglin, (319) 335-6660, becky-soglin@uiowa.edu

PHOTOS/GRAPHICS: A photo of Weisman is available for downloading at http:// www.biochem.uiowa.edu/faculty/weisman/index.htm

David Pedersen | EurekAlert!
Further information:
http://www.uiowa.edu/
http://www.biochem.uiowa.edu/faculty/weisman/index.htm

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>