Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers identify protein that causes cell nucleoli to disassemble

17.02.2003


Protein used during cell development important in cloning technique



Researchers at the University of Minnesota have identified the protein responsible for disassembly of donor nucleoli in the context of nuclear cloning. Although it was already known that nucleoli, essential structures for protein synthesis, normally disassemble or disappear for a period of time in the early animal development and also during nuclear cloning, it was not known until this study what causes this phenomenon. Researchers hope the identification of the protein will lead to advances in cloning techniques and potential therapies. The study will be published in the journal Nature Cell Biology on Feb. 17 (www.nature.com/ncb)

“The nucleolus, one of the largest structures found within the cell’s nucleus, contains numerous proteins that have essential roles in cell biology, for cancer, stem cells, and aging,” said lead researcher Nobuaki Kikyo, M.D, Ph.D., assistant professor of medicine, Stem Cell Institute. “By understanding how the nucleolus disassembles and reassembles, we hope to learn more about normal cell development, the roles of specific proteins, and their impact on human diseases.”


In the cloning process, the genetic material is removed from an egg cell, and then the nucleus containing the genetic material from a somatic (or body-associated) cell is transplanted into the egg cell. Kikyo and his team recreated the normal procedure by mixing somatic cell nuclei and protein extract from frog eggs to purify the proteins responsible for nucleolar disassembly. Kikyo identified the proteins, FRGY2a and FRGY2b, that disassemble nucleoli without help of other proteins. The nucleoli are later reassembled as they normally would be.

“The study shows that FRGY2 proteins may be able to transform adult cells into something more like embryonic cells—young and actively proliferating cells with flexibility to turn into many types of cells,” said Kikyo. “Furthermore, this work shows that it is possible to dissect the very mysterious process – cloning – with a biochemical approach and identify key players in it.”

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

Efficient engine production with the latest generation of the LZH IBK

13.11.2019 | Machine Engineering

Small RNAs link immune system and brain cells

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>