Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Sticky’ DNA crystals promise new way to process information

07.02.2003


Imagine information stored on something only a hundredth the size of the next generation computer chip--and made from nature’s own storage molecule, DNA. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used the selective "stickiness" of DNA to construct a scaffolding for closely spaced nanoparticles that could exchange information on a scale of only 10 angstroms (an angstrom is one 10-billionth of a meter). The technique allows the assembly of components on a much smaller scale and with much greater precision than is possible with current manufacturing methods, Kiehl said. The work is published in a recent issue of the Journal of Nanoparticle Research.



"In a standard silicon-based chip, information processing is limited by the distance between units that store and share information," said Kiehl. "With these DNA crystals, we can lay out devices closely so that the interconnects are very short. If nanoparticles are spaced even 20 angstroms apart on such a DNA crystal scaffolding, a chip could hold 10 trillion bits per square centimeter--that’s 100 times as much information as in the 64 Gigabit D-RAM memory projected for 2010. By showing how to assemble nanoscale components in periodic arrangements, we’ve taken the first step toward this goal."

Eventually, a chip made from DNA crystals and nanoparticles could be valuable in such applications as real-time image processing, Kiehl said. Nanocomponents could be clustered in pixel-like "cells" that would process information internally and also by "talking" to other cells. The result could be improved noise filtering and detection of edges or motion. Someday, the technology may even help computers identify images with something approaching the speed of the human eye and brain, said Kiehl.


The team devised a DNA scaffolding for arrays of nanoparticles of gold, but the scaffolding could also hold arrays of carbon nanotubes or other molecules. Information could be stored as an electrical charge on certain nanoparticles; the presence or absence of charge would constitute one bit of information. Alternatively, nanoparticles could be magnetic, and the magnetic states would be read as information. Because DNA strands contain four chemical bases spaced every 3.4 angstroms, information might be stored on that small a scale, Kiehl said.

To manufacture the scaffolding, the researchers took advantage of the fact that each base spontaneously pairs up with, or "sticks to," one of the other bases to form the famous DNA double helix. The team synthesized four different two-dimensional "tiles" of DNA, each tile having an extension that sticks to the extension on another tile. Like self-assembling jigsaw pieces, the tiles joined themselves into a flat crystal with a repeating pattern. One tile had a stretch of DNA that extended above the plane of the tile; to this the researchers anchored a spherical, 55-atom nanoparticle of gold. Under an electron microscope, the gold nanoparticles appeared as regular lines of bright spots. A regular pattern of nanoparticles is important in arranging them to process or store information.

"Gold is a metal, and a matrix between metals and organic molecules like DNA is very hard to make," Kiehl said. "If we can make DNA scaffolding for gold, we think we can do it for carbon nanotubes and other organic molecules. The technique is well suited to laying out locally interconnected circuitry, which is of great interest for circumventing the interconnect bottleneck-- the well-known problem where wires, rather than devices (transistors), limit computing speed."

Other scientists have used DNA as nanoparticle "glue," but such arrangements are prone to structural flaws, which limits their usefulness, said Kiehl. In contrast, the virtually perfect arrangement of molecules within a DNA crystal allows precise control over the arrangement of the particles.

Among the next steps for the researchers is to demonstrate that nanoparticles bound to the DNA crystals can function electrically.

"We’re working on instrumentation to do electrical characterization of gold nanoparticles and other nanocomponents on DNA," said Kiehl. "We hope to show, for example, that DNA doesn’t interfere with the electrical functioning of the nanocomponents."

The work was supported by the National Science Foundation.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish
24.02.2020 | National University of Ireland Galway

nachricht Shaping the rings of molecules
24.02.2020 | University of Montreal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>