Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Identify Gene Pathway Causing Pulmonary Hypertension

06.02.2003


Researchers at the University of California, San Diego (UCSD) School of Medicine have identified an over-active gene and the molecular events it triggers to cause acquired cases of pulmonary hypertension, a form of high blood pressure in the lungs that kills about one percent of the population each year.



The findings, published in the February 6, 2003 issue of the New England Journal of Medicine, offer the first specific molecular targets for development of new therapies.

"Although a small subset of patients benefit from surgery to remove blood clots from the lungs, currently the only treatment for most types of pulmonary hypertension is lung transplantation," said the study’s senior author Patricia Thistlethwaite, M.D., Ph.D., an assistant professor in the UCSD Division of Cardiothoracic Surgery.


The researchers found that a gene called angiopoietin-1, which is normally involved in smooth-muscle growth in newly developing embryonic blood vessels, somehow gets inappropriately turned on in adulthood. As angiopoietin-1 aberrantly over-expresses itself, it initiates a molecular chain of events that causes muscle cell proliferation within the lining of the lung’s blood vessels. As the vessel wall thickness grows, the small lung arteries become progressively narrowed and blocked.

Almost all patients with pulmonary hypertension acquire the disease from diverse causes such as congenital heart defects, autoimmune disease, left-sided heart failure, blood clots in the lungs, drug interactions or vascular diseases. A handful of patients inherit a rare form of the disease from a mutation in a gene called bone morphogenetic protein receptor type2 (BMPR2).

"We wondered whether a common molecular mechanism underlies all the different causes of pulmonary hypertension as well as the inherited form," Thistlethwaite said.

The investigators reasoned that since angiopoietin-1 was involved in embryonic smooth-muscle development, an aberrant turn-on of this gene might cause the over-growth of muscle tissue in adults. During an 18 month period, the team obtained lung biopsies from 42 pulmonary hypertension patients who had acquired pulmonary hypertension from a variety of causes. For comparative purposes, they also obtained biopsies from 19 individuals without pulmonary hypertension, who were undergoing lung surgery.

Using sophisticated laboratory tests on the lung tissue, the scientists found that angiopoietin-1 attached itself to a receptor (or docking protein) called TIE2, which is only located in the lining of blood vessels. In turn, the angiopoietin-1/TIE2 duo caused the down-regulation, or work slow-down, of another gene called bone morphogenetic protein receptor type1 (BMPR1). The result was the muscle build-up characteristic of pulmonary hypertension.

"Researchers have known for years that BMPR1 and BMPR2 work together on the cell surface to stimulate intracellular signaling," said Thistlethwaite. "This means that our findings show a link between the inherited form of pulmonary hypertension, caused by a BMPR2 mutation, and the non-familial, acquired form, caused by the angiopoietin-1, TIE2, BMPR1 molecular pathway."

Currently, the Thistlethwaite team is working on potential inhibitors of angiopoitin-1, to see if they can stop pulmonary hypertension in rodent models.

The study was funded by the Charles B. Wang Foundation and grants from the National Institutes of Health. Additional authors of the paper were Lingling Du, M.D.; Christopher C. Sullivan, M.S.; Danny Chu, M.D.; Augustine J. Cho, B.A.; Masakuni Kido, M.D., and Stuart W. Jamieson, M.D., FRCS, UCSD Division of Cardiothoracic Surgery; Paul L. Wolf, M.D., UCSD and the San Diego VA Healthcare System; Jason X.-J. Yuan, M.D., Ph.D., UCSD Pulmonary and Critical Care Medicine; and Renna Duetsch, Ph.D., UCSD Biostatistics.


News media contact:
Sue Pondrom
619-543-6163
spondrom@ucsd.edu

Sue Pondrom | EurekAlert!
Further information:
http://health.ucsd.edu/news/
http://health.ucsd.edu/news/2003/02_05_Thistle.html
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>