Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic heterogeneity of Icelanders

04.02.2003


Research undertaken by Professor Einar Árnason at the University of Iceland, Reykjavik and published in the January 2003 issue of Annals of Human Genetics highlights the inaccuracy of claims that Icelanders are a ’genetically homogenous’ population.

Professor Árnason explains in his article: "Recently, statements have been made about a special ’genetic homogeneity’ of the Icelanders that are at variance with earlier work on blood groups and allozymes." Iceland has been said to be an "island so inbred that it is a happy genetic hunting ground", ideal for gene mapping, and that "nowhere else has such a pure – and predictable – genetic inheritance" in the popular press. This supposed genetic homogeneity was a major factor in the establishment of deCODE Genetics, the biotechnology company set up in Iceland in 1996 to map disease genes in the Icelandic population. The geographical isolation of the country with little migration for over 1000 years, combined with a series of disasters such as plague and famine, was presumed to have minimized variation in the gene pool. Researchers now suggest that there was a lack of evidence to confirm this homogeneity.

To investigate these claims an extensive reanalysis of mtDNA variation was undertaken by examining primary data from original sources for 26 European populations. The results showed that Icelanders are actually among the most genetically heterogeneous Europeans by the mean number of nucleotide differences, as well as by estimates of parameters of the neutral theory. This is a signature of population admixture during the founding or history of Iceland. Examination of the published literature on blood group and allozyme variation did not provide any support for the notion of special genetic homogeneity of the Icelanders, and further studies of microsatellite variation are unlikely to do so. It is doubtful that population changes during past calamities had much effect on the genetic variability of Icelanders.



Árnason identified anomalies in data used in previous studies that were in some instances due to errors in publicly accessible databases. By reanalysis using primary data from original sources the errors were avoided in this study, and steps were taken to correct them so that they are not propagated in future studies. Árnason concludes "claims about a special genetic homogeneity of Icelanders relative to European populations would be suspect to the extent that they depended on anomalous data instead of the primary data. In any case, one would not expect that meaningful patterns about homogeneity, founder effects and drift in different populations could emerge from analyses whose assumptions are violated and using erroneous data."

In the same issue of Annals of Human Genetics, in a commentary on the Árnason article, Dr Peter Forster at the University of Cambridge says of the extent of primary data errors in this type of research: "One solution may be for journals to impose more rigorous checks that would discourage hasty submission of manuscripts without adequate proofreading, for example by informing all submitting authors that sequence electropherograms routinely will be checked in the course of the reviewing process. But ultimately, of course, it is up to the authors to ensure the accuracy of their data, and the Icelandic example provides a warning that more care is needed than has been practised in the past." Dr Forster also warns: "There is no reason to suppose that DNA sequencing errors are restricted to mtDNA. In fact, it is mainly because mtDNA is a non-recombining genetic unit that many errors are easily identified by phylogenetic analysis; errors in nuclear loci or in rapidly mutating loci such as short tandem repeats will be much harder to detect."

Professor Einar Árnason | EurekAlert!

More articles from Life Sciences:

nachricht A new view of microscopic interactions
01.07.2020 | University of Missouri-Columbia

nachricht Microscope allows gentle, continuous imaging of light-sensitive corals
01.07.2020 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>