Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researcher studies newly discovered ’good’ cholesterol gene

04.02.2003


Stanford University Medical Center researchers have found that a recently discovered gene regulates HDL (high density lipoproteins) cholesterol, also known as "good" cholesterol. The study, published in the February issue of the Journal of Clinical Investigation, could lead to new therapies for heart disease, said lead author Thomas Quertermous, MD.



"This is a significant and unexpected finding, and the gene is going to be a real target for the prevention and treatment of heart disease," said Quertermous, the William G. Irwin Professor and chief of cardiovascular medicine at Stanford University School of Medicine. "This type of thing doesn’t happen every day."

HDL cholesterol, often referred to as the "good" cholesterol, has been proven to impact a person’s risk of developing heart disease. "HDL cholesterol is an independent predictor of one’s risk," said Quertermous. "If you have a high level of HDL cholesterol your chance of getting heart disease is very low."


Researchers know that levels of HDL cholesterol are regulated in part by members of the lipase gene family. Three years ago, Quertermous’ team and a laboratory on the East Coast simultaneously discovered the newest member of that family and found that its protein was expressed in a variety of tissues. Subsequent studies showed that the new gene - the endothelial lipase gene (LIPG) - played a role in lipid metabolism.

"It was a striking, if not dramatic, finding that this gene that we found in the blood vessel walls appeared to regulate HDL cholesterol levels," said Quertermous.

Quertermous’ team sought to examine the gene’s exact role in regulating HDL cholesterol level by examining genetic models with altered levels of endothelial lipase (EL) expression. Working with mouse models, the researchers increased EL expression in one group by inserting copies of the human gene and decreased EL expression by knocking out the LIPG gene in another group.

Quertermous reports that the findings were striking: Altering the genes showed a clear and significant inverse relationship between HDL cholesterol level and EL expression. Levels of HDL cholesterol decreased by 19 percent in the first group and increased by 57 percent in the group whose gene was knocked out.

"When we overexpressed the human gene in the mice, the HDL cholesterol levels dropped," said Quertermous. "Conversely, when we knocked out the gene in mice, the levels were much higher."

Quertermous said that his team lacks insight into the mechanism by which EL impacts HDL cholesterol levels, and that this is something his team will explore. The group will also further study mouse models, and a group of human patients, to see if changes in HDL cholesterol levels directly correlate with heart disease. "My hypothesis - and strong suspicion - is that if you knock out the gene, your chance of disease development is decreased," said Quertermous.

Quertermous said a greater understanding of this gene’s role in HDL cholesterol’s formation and metabolism will help researchers regulate this risk factor. "This becomes one of the most attractive targets available for the development of pharmaceutical agents to modulate HDL cholesterol levels," he said.


The research was done at the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford, which was established with a grant from the Donald W. Reynolds Foundation. Quertermous’ collaborators on the study include Allen Cooper, MD, professor of medicine at Stanford, and researchers at the Palo Alto Medical Foundation.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Michelle Brandt at (650) 723-0272 (mbrandt@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Michelle Brandt | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>