Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies unlock Methuselah’s secrets

30.01.2003


New research published in Genome Biology investigates genes that increase the life span of fruit flies in an effort to gain a greater understanding of the ageing process. The researchers from the University of Southern California and Harvard Medical School screened 10,000 fruit fly populations that were mutated.

Their results revealed that six populations of mutant flies lived 5-17% longer than normal. Furthermore, analysis of these long-lived flies showed that the extended life span was caused by the overexpression of six different genes.

The use of the fruit fly Drosophila melanogaster in aging research is common as these flies are short-lived in comparison to humans but carry out many of the same biological processes. The current focus of research is on genes that increase the life span of an animal because it is difficult to disentangle changes that decrease life span from those that cause disease.



Jumping genes or transposable elements are regions of DNA that are able to move around the genome of an organism. The movement of these transposable elements can cause mutations because they interrupt a gene in another part of the genome. Gary Landis, Depak Bhole and John Tower exploited this phenomenon by using a chemically controlled transposable element that acts as an accelerator of gene expression to find mutations that could make flies live longer. Crucially, they were able to turn this acceleration on an off by feeding the flies a specific chemical and to look at the effects of the mutations in adult flies.

Their experiments revealed six fly populations that lived 5-17% longer than normal flies. Characterisation of these mutant flies showed increased expression of a different gene for each population. Interestingly the overexpressed genes were involved in a variety of fundamental cellular processes, which raises the possibility that similar effects are produced in higher organisms or even humans. The authors, however, are cautious about the implications of their findings

"Further experiments will be required to confirm the role of these genes in life-span regulation, and to determine their interactions with each other and in known or novel life-span regulatory pathways."

Gordon Fletcher | Genome Biology
Further information:
http://genomebiology.com/mkt/1001/2003/4/2/R8
http://www.genomebiology.com/pressreleases
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>