Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using RNA interference to tune gene activity in stem cells

03.02.2003


New method for the study and treatment of disease



The application of RNA interference (RNAi) to the study of mammalian biology and disease has the potential to revolutionize biomedical research and speed the development of novel therapeutic strategies.

A series of studies by Greg Hannon at Cold Spring Harbor Laboratory (CSHL) have revealed a great deal of information about the mechanism of RNAi, as well as how RNAi can be adapted for use in medical research. These and other studies led Science to name discoveries concerning RNAi the "Breakthrough of the Year" for 2002 among all of the sciences.


Now, researchers at CSHL have shown that RNAi can be used to set the level of gene activity in stem cells on "low," "medium," or "high."

The new study indicates that stable suppression of deleterious genes by RNAi--in which adult stem cells are isolated, modified ex vivo, and then re-introduced into the affected individual--might be an effective strategy for treating human disease.

The study, published in the February issue of Nature Genetics, focussed on the role of a tumor suppressor gene called p53 in a mouse model of lymphoma.

In the mouse model, forced expression of the Myc oncogene in B-cells causes the mice to develop B-cell lymphomas by 4 to 6 months of age. The scientists, led by Greg Hannon and his CSHL colleague, Scott Lowe, knew that completely deleting the p53 gene causes lymphomas to develop much sooner, and in a more aggressive, highly-invasive form, than lymphomas that develop when the p53 gene is present.

To test the effect of decreasing p53 to particular levels via RNA interference, the scientists reconstituted the blood cells of mice by first irradiating the animals to destroy their endogenous, bone marrow supply of hematopoietic stem cells, and then injected the mice with a fresh supply of hematopoietic stem cells that had been engineered through RNAi to produce low, medium, or high levels of p53.

The study showed that establishing different levels of p53 in B-cells by RNAi produces distinct forms of lymphoma. Similar to lymphomas that form in the absence of p53, lymphomas that formed in mice with low p53 levels developed rapidly (reaching terminal stage after 66 days, on average), infiltrated lung, liver, and spleen tissues, and showed little apoptosis or "programmed cell death."

In contrast, lymphomas that formed in mice with intermediate p53 levels developed less rapidly (reaching terminal stage after 95 days, on average), did not infiltrate lung, liver, or spleen tissues, and showed high levels of apoptosis. In mice with high B-cell p53 levels, lymphomas did not develop at an accelerated rate, and these mice did not experience decreased survival rates compared to control mice.

The study illustrates the ease with which RNAi "gene knockdowns" can be used to create a full range of mild to severe phenotypes (something that geneticists dream about), as well as the potential of RNAi in developing stem cell-based and other therapeutic strategies.

Along with a recent study by Hannon and his colleagues that demonstrated germline transmission of RNAi, the current study establishes RNAi as a convenient alternative to traditional, laborious, and less flexible homologous recombination-based gene knockout strategies for studying the effects of reduced gene expression in a wide variety of settings.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>