Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen key switch in transforming adult stem cells from fat into cartilage

03.02.2003


In their ongoing research on turning adult stem cells isolated from fat into cartilage, Duke University Medical Center researchers have demonstrated that the level of oxygen present during the transformation process is a key switch in stimulating the stem cells to change.

Their findings were presented today (Feb. 2, 2003) at the annual meeting of the Orthopedic Research Society.

Using a biochemical cocktail of steroids and growth factors, the researchers have "retrained" specific adult stem cells that would normally form the structure of fat into another type of cell known as a chondrocyte, or cartilage cell. During this process, if the cells were grown in the presence of "room air," which is about 20 percent oxygen, the stem cells tended to proliferate; however, if the level of oxygen was reduced to 5 percent, the stem cells transformed into chondrocytes.



This finding is important, the researchers say, because this low oxygen level more closely simulates the natural conditions of cartilage, a type of connective tissue that cushions many joints throughout the body. However, since it is a tissue type poorly supplied by blood vessels, nerves and the lymphatic system, cartilage has a very limited capacity for repair when damaged. For this reason, the Duke investigators are searching for a bioengineering approach to correct cartilage injury.

"Our findings suggest that oxygen is a key determinant between proliferation and differentiation, and that hypoxia, or low oxygen levels, is an important switch that tells cells to stop proliferating and start differentiating,’ said David Wang, a fourth-year medical student at Duke, who presented the results of the Duke research.

Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team, said that the combination of growth factors sets the adult stem cells on the right path, while controlling oxygen levels inspires the cells to more readily transform into chondrocytes. Without the growth factors, he said, changing oxygen levels has no effect on the cells.

"For us, the ultimate goal is the development of a bioreactor where we can very carefully control the physical and chemical environment of these cells as they transform," Guilak said. "The results of these experiments which demonstrated the role of oxygen levels in the process represent another important step in achieving this goal."

Two years ago at the Orthopedic Research Society meeting, the Duke team for the first time reported that cartilage cells can be created from fat removed during liposuction procedures. Not only were the researchers able to make cells change from one type into another, they grew the new chondrocytes in a three-dimensional matrix, a crucial advance for success in treating humans with cartilage damage.

In their latest experiments, the team used the materials collected from liposuction procedures performed on multiple human donors. These materials were then treated with enzymes and centrifuged until cells known as adipose-derived stromal cells remained. These isolated cells were infused into three-dimensional beads made up of a substance known as alginate, a complex carbohydrate that is often used as the basis of bioabsorbable dressings, and then treated with the biochemical cocktail.

Those cells grown in hypoxic conditions saw growth inhibited by as much as 44 percent, but saw as much as an 80 percent increase in chondrocyte differentiation.

"No one has looked at the role of hypoxia in the creation of chondrocytes, but it made sense since cartilage normally exists in an hypoxic environment," Wang said. "While we know oxygen plays a role, we don’t know the mechanism. The next questions to answer are how the cells sense the level of oxygen around them and then turn that into a metabolic change."

The researchers anticipate that the first patients to benefit from this research would be those who have suffered some sort of cartilage damage due to injury or trauma. Farther down the line, they foresee a time when entire joints ravaged by osteoarthritis can be relined with bioengineered cartilage.

"We don’t currently have a satisfactory remedy for people who suffer a cartilage-damaging injury," Guilak said. "There is a real need for a new approach to treating these injuries. We envision being able to remove a little bit of fat, and then grow customized, three-dimensional pieces of cartilage that would then be surgically implanted in the joint. One of the beauties of this system is that since the cells are from the same patients, there are no worries of adverse immune responses or disease transmission."

The Duke researchers have developed several animal protocols to test how this cartilage fares in a living system.


The research was supported by the National Institutes of Health; Artecel Sciences, Inc., Durham, N.C.; the North Carolina Biotechnology Center, Research Triangle Park, N.C.; and the Kenan Institute for Engineering, Technology, and Science at North Carolina State University, Raleigh, N.C.

Joining Wang and Guilak in the research were Beverley Fermor, Ph.D., from Duke, and Jeff Gimble, M.D., from Artecel Sciences.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu/

More articles from Life Sciences:

nachricht Neuronal circuits in the brain 'sense' our inner state
15.07.2020 | Technische Universität München

nachricht Novel test method detects coronavirus in highly diluted gargle samples
15.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Tiny bubbles make a quantum leap

15.07.2020 | Physics and Astronomy

Higher-order topology found in 2D crystal

15.07.2020 | Materials Sciences

Russian scientists have discovered a new physical paradox

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>