Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researcher takes part in breakthrough research on in

24.01.2003


Recent research shows that insects and humans have something surprising in common: Some six-legged species take in oxygen using a similar means to the way we fill our lungs.



Scientists from the Field Museum and Argonne National Laboratory in Chicago and from Clemson University used a powerful x-ray imaging device to get the first comprehensive view of live insects breathing. Their observations and research results are reported in the Jan. 24 issue of Science, an internationally respected research publication.

"The discovery of this fundamental aspect of respiratory biology for insects could revolutionize the field of insect physiology," said lead author Mark Westneat, associate curator of zoology at the Field Museum.


Researchers discovered that many insects, including crickets, wood beetles and carpenter ants, are able to breathe using a mechanism similar to the one we use to ventilate our own lungs. This is remarkable because insects do not have lungs, but rather a system of internal tubes called tracheae, which they use to breathe through slow, passive means.

The study showed that some insects also breathe by compressing and expanding tracheae in their head and thorax, using them like lungs. The breathing cycles can be as fast as one per second, producing air exchange rates of nearly 50 percent, similar to moderately exercising humans.

"This rapid, active breathing mechanism might help to explain the tremendous success of insects, since the ability to rapidly deliver oxygen to body tissues may have played a role in the evolution of aspects of insect function, ranging from flight to the performance of sense organs, said Richard W. Blob (pronounced "Bl-oh-b"), assistant professor in Clemson University’s biological sciences department.

"As we come to understand the basic physiology of animal respiration and circulation through research such as this project, we have the potential to make further discoveries that can ultimately improve our ability to treat disease in humans."

Until now, it has not been possible to see movement inside living insects. Researchers solved the problem by using a synchrotron, a circular particle accelerator that can generate x-rays. The one at Argonne National Laboratory ranks among the most powerful in the world.

"This is the first time anyone has applied this technology to create x-ray videos of living animals," says co-author Wah-Keat Lee, a physicist at the Argonne lab. "This work opens up the possibility of developing a powerful new technique for studying how living animals function."

Peter Kent | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>