Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researcher takes part in breakthrough research on in

24.01.2003


Recent research shows that insects and humans have something surprising in common: Some six-legged species take in oxygen using a similar means to the way we fill our lungs.



Scientists from the Field Museum and Argonne National Laboratory in Chicago and from Clemson University used a powerful x-ray imaging device to get the first comprehensive view of live insects breathing. Their observations and research results are reported in the Jan. 24 issue of Science, an internationally respected research publication.

"The discovery of this fundamental aspect of respiratory biology for insects could revolutionize the field of insect physiology," said lead author Mark Westneat, associate curator of zoology at the Field Museum.


Researchers discovered that many insects, including crickets, wood beetles and carpenter ants, are able to breathe using a mechanism similar to the one we use to ventilate our own lungs. This is remarkable because insects do not have lungs, but rather a system of internal tubes called tracheae, which they use to breathe through slow, passive means.

The study showed that some insects also breathe by compressing and expanding tracheae in their head and thorax, using them like lungs. The breathing cycles can be as fast as one per second, producing air exchange rates of nearly 50 percent, similar to moderately exercising humans.

"This rapid, active breathing mechanism might help to explain the tremendous success of insects, since the ability to rapidly deliver oxygen to body tissues may have played a role in the evolution of aspects of insect function, ranging from flight to the performance of sense organs, said Richard W. Blob (pronounced "Bl-oh-b"), assistant professor in Clemson University’s biological sciences department.

"As we come to understand the basic physiology of animal respiration and circulation through research such as this project, we have the potential to make further discoveries that can ultimately improve our ability to treat disease in humans."

Until now, it has not been possible to see movement inside living insects. Researchers solved the problem by using a synchrotron, a circular particle accelerator that can generate x-rays. The one at Argonne National Laboratory ranks among the most powerful in the world.

"This is the first time anyone has applied this technology to create x-ray videos of living animals," says co-author Wah-Keat Lee, a physicist at the Argonne lab. "This work opens up the possibility of developing a powerful new technique for studying how living animals function."

Peter Kent | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Life Sciences:

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
12.12.2019 | Nanyang Technological University

nachricht Eavesdropping on the human microbiome uncovers 'potent' new antibiotics
12.12.2019 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Safer viruses for vaccine research and diagnosis

12.12.2019 | Health and Medicine

NTU Singapore scientists convert plastics into useful chemicals using su

12.12.2019 | Life Sciences

Studies show integrated strategies work best for buffelgrass control

12.12.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>