Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how the brain pays attention

24.01.2003


Neural circuits that control eye movements play multiple roles in visual attention



With so many visual stimuli bombarding our eyes -- cars whizzing by, leaves fluttering -- how can we focus attention on a single spot -- a word on a page or a fleeting facial expression? How do we filter so purely that the competing stimuli never even register in our awareness?

A pair of Princeton scientists have found that it has a lot to do with the brain circuits that control eye movements. Neuroscientists Tirin Moore and Katherine Armstrong showed that these brain circuits serve a double function: In addition to programming eye movements, they also trigger amplification or suppression of signals that pour in from the locations where the eyes could move.


The finding, published in the Jan. 23 issue of Nature, is the first to pinpoint a neural mechanism behind one of the most fundamental aspects of mental activity -- the ability to direct attention to one thing as opposed to another.

"Without regulating your attention, you would orient to everything that appears and moves. An organism that couldn’t filter anything just wouldn’t work. It would be in a state of constant distraction," said Moore. "This work shows that, whether we are moving our eyes or not, the networks that control eye movements may be a source of that filtering."

Working with monkeys, the researchers picked a site in the brain area that controls eye movements and established exactly where neurons at that site made the eyes move. They then located a single neuron, in another part of the brain, that was responsible for processing visual stimuli from precisely the same location targeted by neurons at the eye movement site.

With the monkeys trained to fixate on the center of their visual field, the researchers displayed an image in the location associated with the two brain areas. They then electrically stimulated the eye movement neurons, but not strongly enough to actually make the eyes move. When this microstimulation was applied, the visual processing neuron showed a much greater response to the displayed image than when the electrical stimulation was not applied. On the other hand, when no image was being displayed, microstimulation of eye movement neurons had no effect on the visual neuron.

The researchers concluded that the very act of preparing an eye movement to a particular location caused an amplification of signals from that area. These eye movement neurons acted like a volume control on an amplifier, controlling the strength of the signal from one particular spot in space, but not altering the quality of that signal. By stimulating neurons in the eye movement area, the researchers in effect forced the animal to shift its attention from one location to another even though it did not move its eyes.

The study hinges on a long-known fact in visual attention -- that humans and primates can attend to something without moving their eyes to that object. This ability is useful for many animals that encounter social situations in which there is a potential danger in looking directly at another animal. But scientists were unsure how closely eye movements were tied to the phenomenon of attention.

Moore and Armstrong’s finding builds on an earlier study in which Moore observed behavioral effects of electrically stimulating eye movement neurons. In that study, monkeys were better able to detect subtle changes in a visual target when their eye movement neurons had been stimulated. The new study, which measured electrical output of visual neurons rather than measuring a behavioral effect, draws a much more powerful conclusion about how the brain is wired.

Calling the study a "landmark," neuroscientist William Newsome of Stanford University compared the work to discovering how the ignition system of a car is wired. "You know, from looking at the car behaviorally, that if you put the key in the ignition and turn the crank it leads to the car starting," said Newsome. "But if you really want to understand what’s going on inside that car -- if you want to go in there and fix things when they go wrong -- you need to know how that behavior comes to pass. Where does the signal go? And then where does it go from there?"

There are many human diseases and disorders that involve defects in information processing and attention -- most famously attention deficit disorder -- for which scientists would like a firm idea of what neural circuits are involved, said Newsome.

"It takes the whole attention field and steps it up a notch, because now people can start asking questions about mechanisms," said Michael Shadlen, an expert in visual perception at the University of Washington.

Apart from the particular finding about spatial attention, the study reveals an important technique that could be used to trace many other types of neural circuits, the researchers said. "Short-term memory, decision-making, planning motor acts all involve flow of information from one area to another and until now we have had no real way to monitor that information flow or reproduce it in the laboratory," said Newsome.

A next step, said Moore, will be to further analyze the eye movement neurons and find out whether they act alone in regulating spatial attention. Another experiment would be to see whether manipulating these neurons and ostensibly making an animal attend to one place or another can determine what information the animal remembers. "If you don’t attend to something, you don’t see it," Moore said. "There are many things that hit our retinas, but we don’t experience them and don’t remember them unless we pay attention to them."

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Life Sciences:

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

nachricht Nerve cells in the human brain can “count”
21.09.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>