Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Scientists Discover Rich Medical Drug Resource in Deep Ocean Sediments

20.01.2003


Promising cancer-fighting candidates emerge from tropical ocean ‘mud’


Twelve strains of Salinospora, a new natural marine microbe discovered by the Center for Marine Biotechnology and Biomedicine at Scripps



Although the oceans cover 70 percent of the planet’s surface, much of their biomedical potential has gone largely unexplored. Until now.

A group of researchers at Scripps Institution of Oceanography at the University of California, San Diego, have for the first time shown that sediments in the deep ocean are a significant biomedical resource for microbes that produce antibiotic molecules.


In a series of two papers, a group led by William Fenical, director of the Center for Marine Biotechnology and Biomedicine (CMBB) at Scripps Institution, has reported the discovery of a novel group of bacteria found to produce molecules with potential in the treatment of infectious diseases and cancer.

“The average person thinks of the bottom of the ocean as a dark, cold, and nasty place that is irrelevant, but we’ve shown that this environment may be a huge resource for new antibiotics and drugs for the treatment of cancer,” said Fenical.

The first paper, published in the October 2002 issue of Applied and Environmental Microbiology, highlights the discovery of new bacteria, called actinomycetes, from ocean sediments. For more than 45 years, terrestrial actinomycetes were the foundation of the pharmaceutical industry because of their ability to produce natural antibiotics, including important drugs such as streptomycin, actinomycin, and vancomycin. The data from this paper provide the first conclusive evidence of the widespread occurrence of indigenous actinomycete populations in marine sediments.

The second paper, published in the Jan. 20, 2003, issue of the international edition of the chemistry journal Angewandte Chemie, identifies the structure of a new natural product, which Fenical’s group has named Salinosporamide A, from this new bacterial resource. The new compound is a potent inhibitor of cancer growth, including human colon carcinoma, non-small cell lung cancer, and, most effectively, breast cancer. January’s report cracks the door open for a line of similar discoveries from the recently discovered Salinospora genus.

“The second paper shows the potential for the production of materials that are highly biologically active and very chemically unique. This is likely to be the tip of the iceberg of diverse chemical formulas that are out there,” said Fenical.

Although more than 100 drugs today exist from terrestrial microorganisms, including penicillin, arguably the most important drug in medicine, the potential from land-based microbial sources began dwindling nearly 10 years ago. Pharmaceutical investigators searched high and low around the globe for new terrestrial, drug-producing microbes, but with diminishing payback. According to Fenical, when considering the ever-increasing resistance of bacteria to existing antibiotics, the need to make new discoveries becomes essential.

Surprisingly, the oceans, with some of the most diverse ecosystems on the planet, were largely ignored as a potential source for actinomycete bacteria. Given this omission, it was natural for Fenical’s group at the Scripps CMBB to initiate studies of marine environments for new microorganisms important in pharmaceutical discovery.

His group developed new methods and tools for obtaining a variety of ocean sediments, including a miniaturized sampling device that efficiently captures samples from the deep ocean. They derived bottom muds from more than 1,000 meters deep from the Atlantic and Pacific Oceans, the Red Sea, and the Gulf of California.

They also developed new methods for sifting through these samples (which contain roughly one billion microorganisms per cubic centimeter), culturing the microorganisms, identifying them by genetic methods, and screening their metabolic products for anticancer and antibiotic properties.

By genetic and culture analysis, Fenical’s group discovered the new genus Salinospora, a type of actinomycete bacteria found in tropical and subtropical oceans, but never seen before on land.

The results from their biomedical studies were extraordinarily positive. Of 100 strains of these organisms tested, 80 percent produced molecules that inhibit cancer cell growth. Roughly 35 percent revealed the ability to kill pathogenic bacteria and fungi. Based on the worldwide distribution of Salinospora, Fenical estimates that many thousands of strains will be available.

“I would even go as far as to say that never before has this level of biological activity been observed within a single group of organisms,” said Fenical.

These discoveries have been patented by the University of California and licensed to Nereus Pharmaceuticals Inc. for subsequent development. Nereus is a four-year-old biotech company in San Diego, Calif. dedicated to the development of new drugs from this new source for drug discovery.

“These extraordinary marine discoveries by Scripps Institution, coupled with their industrialization by Nereus Pharmaceuticals, could provide the next great source of drug discovery for the pharmaceutical industry,” said Kobi Sethna, president and CEO of Nereus Pharmaceuticals.

“These discoveries speak to the future of antibiotic discovery,” said Fenical. “They point to the fact that the ocean is an incredibly exciting new microbial resource. They indicate how little we know, and they demonstrate how much we need to invest in further exploration of the oceans.”

In addition to Fenical, coauthors on the papers include Tracy Mincer, Paul Jensen, Christopher Kauffman, Robert Feling, and Greg Buchanan.

Funding for the studies was provided by the National Science Foundation; the National Cancer Institute of the National Institutes of Health; the University of California BioSTAR project; and the Khaled Bin Sultan Living Oceans Foundation.

Mario Aguilera | EurekAlert!
Further information:
http://cmbb.ucsd.edu/
http://scrippsnews.ucsd.edu/pressreleases/fenical_salinospora.html

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>