Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant agriculture: 50 million years of success

20.01.2003


Fungus-growing ants practice agriculture and have been doing so for the past 50 million years according to research published in the Jan. 17 issue of Science. These ants not only grow fungus gardens underground for food but also have adapted to handling parasitic "weeds" that infect their crops.

The team of scientists who collaborated on this analysis includes Ted Schultz of the Smithsonian’s National Museum of Natural History, Bess Wong of the Smithsonian Tropical Research Institute, Cameron Currie and Alison Stuart of the University of Kansas, Stephen Rehner of the U.S. Department of Agriculture, Ulrich Mueller of the University of Texas at Austin, Gi-Ho Sung and Joseph Spatafora of Oregon State University, and Neil Strauss of the University of Toronto.

"The ants, garden fungi, and weeds have all been co-evolving since ant agriculture first got started -- that’s around 50 million years of symbiosis," said Dr. Ted Schultz, research entomologist in the Entomology Section of the Smithsonian’s National Museum of Natural History.



By studying DNA sequences from ants, garden fungi and fungal weeds, the research team was able to peer millions of years into the past to see how this co-evolutionary system evolved. The researchers learned that the ants, their garden fungi and the parasitic fungal weeds have been living in a co-evolved, complex system for a very long time, probably 50 million years or longer. During that time, they have been locked in a never-ending evolutionary "arms race," in which the ants and garden fungi are perpetually evolving new ways to control the parasitic fungal weeds, and the weeds are perpetually developing new ways to continue to infect fungus gardens.

There is a fourth factor in the ant colonies, a kind of bacteria that the ants cultivate on the outsides of their bodies. These bacteria produce an antibiotic that specifically suppresses the growth of the weed fungi, and the ants use this antibiotic to keep their gardens healthy.

"We suspect that it’s going to turn out that this antibiotic use also goes back to the beginning of ant agriculture," said Schultz.

Past work by researchers established phylogenies (evolutionary histories) for the ants and their cultivated fungi, and it also established that the ant gardens almost always contain weed molds in the genus "Escovopsis," which are found nowhere else in nature -- only in ant gardens. One of the new findings in this research paper is that the scientists now have a phylogeny for the weed fungi, an association that appears to be very ancient.

The collaboration that produced this work is supported by a five-year National Science Foundation special program (Integrated Research Challenges in Environmental Biology) grant, and the Smithsonian Institution is the designated permanent repository for all of the project’s ant, fungal, and bacterial specimens, preserved both for morphological and molecular study. The museum has set up an archival liquid N2 DNA repository for the molecular collections generated by the study.

"The Smithsonian’s repository of ant, fungal and bacterial specimens is an extremely important resource because most of these organisms have never been collected before," said Schultz. "Ant agriculture has become a model system that will be studied for decades or even centuries into the future -- and the Smithsonian’s morphological and DNA specimen collections will be the source of the data for many of those studies."

The Entomology Section deals with insects and their relatives, an immense assemblage comprising about 95 percent of the described animal species of the world. Scientific research by staff concentrates on basic taxonomy and life history, but may include studies of population biology, biogeography, ecology, behavior and invasive species. The Smithsonian’s National Entomological Collection harbors some 35 million entomological specimens, and is essential to researchers in the United States and throughout the world.


The National Museum of Natural History, located at 10th Street and Constitution Avenue N.W., welcomed more than 6 million people during the year 2002, making it the most visited natural history museum in the world. Opened in 1910, the Museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It also fosters critical scientific research as well as educational programs and exhibitions that present the work of its scientists and curators to the public. The Museum is part of the Smithsonian Institution, the world’s largest museum and research complex. The Smithsonian’s National Museum of Natural History is open from 10 a.m. to 5:30 p.m. every day. Admission is free.

Michele Urie | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>