Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve germline transmission of ’gene knockdown’ in mice

20.01.2003


RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable "gene knockdown." This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.



To adapt RNAi for the study of gene function in mice, Thomas Rosenquist of Stony Brook University (rosenquist@pharm.sunysb.edu; tel: 631-444-8054) and Greg Hannon of Cold Spring Harbor Laboratory (hannon@cshl.edu; tel: 516-367-8889) used genetic engineering to create mouse embryonic stem cells in which RNAi was targeted to a particular gene. (As Hannon and his colleagues established in a previous study, silencing a gene of interest through RNAi can be efficiently achieved by engineering a second gene that encodes short hairpin RNA molecules corresponding to the gene of interest.)

These stem cells were injected into mouse embryos, and chimeric animals were born. Matings of these chimeric mice produced offspring that contained the genetically engineered RNAi-inducing gene in every cell of their bodies.


When Rosenquist, Hannon, and their colleagues examined tissues from the transgenic mice, they found that expression of the gene of interest was significantly reduced everywhere they looked (e.g. liver, heart, spleen). Such a reduction in gene expression is called a "gene knockdown" to distinguish it from traditional methods that involve "gene knockouts" or the complete deletion of a DNA segment from a chromosome.

One advantage of the RNAi-based gene knockdown strategy, shown in this study to work in whole animals, is that in future incarnations, the strategy can be modified to silence the expression of genes in specific tissues, and it can be designed to be switched on and off at any time during the development or adulthood of the animal. These and other features of the strategy, as well as combining it with drug discovery and other methods, should enable scientists to uncover a great deal of information about how genes influence many normal and pathological processes.

Although the current study targeted a gene thought to be involved in DNA repair, any gene would have sufficed as a target to demonstrate proof of principle as this study has done.

The creation of germline transgenic mice with heritable RNAi opens the door to the manipulation of gene activity in living animals for many applications.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>