Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers decipher cause of parasite’s worldwide spread

17.01.2003


Research at Washington University School of Medicine in St. Louis reveals that a unique combination of genes inherited less than 10,000 years ago allows the parasite responsible for toxoplasmosis to infect virtually all warm-blooded animals.



Parasite life cycles are complex and thought to develop over long periods with their hosts. This study reveals that parasites sometimes adapt rapidly to new hosts, indicating that host-parasite relationships may not always represent stable, long-term associations.

"Our findings raise the possibility that other parasites may also radically change their lifestyle by a similar mechanism and hence present new threats of infection" says study leader L. David Sibley, Ph.D., associate professor of molecular microbiology. The work is published in the Jan. 17 issue of the journal Science.


About 35 million people in the United States - and up to a quarter of the world’s population - are thought to be chronically infected with Toxoplasma. However, only people with weakened immunity typically develop severe toxoplasmosis, a potentially serious disease that can lead to birth defects, brain inflammation and vision problems. The infection usually is acquired by accidentally swallowing spores from contaminated soil, water, cat litter or objects that have had contact with cat feces. The infection also can be acquired from eating raw or partially cooked meat, especially chicken, pork, lamb or venison.

While eating infected meat easily spreads Toxoplasma from animal to animal, related parasites have highly restricted life cycles and require that a specific carnivore eat a specific herbivore for transmission to occur.

Toxoplasma also is unusual in that worldwide there are only three main strains, whereas related parasites typically have many distinct strains. Research has shown that the three strains are highly similar genetically and arose from a single mating event between two parent parasites. In the present study, members of Sibley’s laboratory, working closely with colleagues at Cambridge University and the University of Georgia, determined how long ago that mating event occurred. They first estimated the rate at which mutations arise in Toxoplasma. They then sequenced a select set of genes from the three strains to determine how many mutations were present. That data, along with estimates of the mutation rate, indicate that the three strains arose from a common ancestor no more than 10,000 years ago.

"That’s the blink of an eye in evolutionary time," says Sibley.

During that blink, however, the new strains managed to infect a wide range of animal species and spread worldwide, suggesting that they had undergone some fundamental change. To explain how that happened, Sibley and his colleagues hypothesized that the parasite’s life cycle had been altered, facilitating much more efficient spread.

The investigators compared the young strains to less common, older strains of Toxoplasma. They found that the young strains have a heightened ability to infect animals that have eaten the cysts that form in the meat of infected animals. Normally such tissue cysts are infectious only to a single species of animal, typically a carnivore that serves as the definitive host where sexual replication occurs. The ability of the young Toxoplasma strains to bypass this restriction allows them to infect many different hosts, where they again form cysts and reproduce asexually.

"Direct oral infectivity after eating tissue cysts is seen only in Toxoplasma and this trait is exemplified by these young strains," says Sibley. "This strongly suggests that the unique combination of genes passed along during that one mating event endowed the three young strains with an ability to more effectively spread throughout the food chain."

The findings demonstrate that changes in the infectiousness of parasites can occur not just through new mutations but also through a reshuffling of existing genes.

"This was a big surprise," says Sibley. "We have always appreciated that genetic recombination could cause subtle changes in an organism, but this is an extreme change: It produced a completely new lifestyle and removed a major barrier to infection."

Sibley and his colleagues now are studying genetic differences between the young and old strains of the parasite to learn more about how the newly derived strains can infect so many hosts.

"If one wanted to make a vaccine against this parasite, those genes and their products might be good ones to target," says Sibley.


###
Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD. Recent expansion of Toxoplasma through enhanced oral transmission. Science, Jan. 17, 2003.

Funding from the National Institute of Allergy and Infectious Diseases, the Biotechnology and Biological Sciences Research Council And the Burroughs Wellcome Fund supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>