Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers decipher cause of parasite’s worldwide spread

17.01.2003


Research at Washington University School of Medicine in St. Louis reveals that a unique combination of genes inherited less than 10,000 years ago allows the parasite responsible for toxoplasmosis to infect virtually all warm-blooded animals.



Parasite life cycles are complex and thought to develop over long periods with their hosts. This study reveals that parasites sometimes adapt rapidly to new hosts, indicating that host-parasite relationships may not always represent stable, long-term associations.

"Our findings raise the possibility that other parasites may also radically change their lifestyle by a similar mechanism and hence present new threats of infection" says study leader L. David Sibley, Ph.D., associate professor of molecular microbiology. The work is published in the Jan. 17 issue of the journal Science.


About 35 million people in the United States - and up to a quarter of the world’s population - are thought to be chronically infected with Toxoplasma. However, only people with weakened immunity typically develop severe toxoplasmosis, a potentially serious disease that can lead to birth defects, brain inflammation and vision problems. The infection usually is acquired by accidentally swallowing spores from contaminated soil, water, cat litter or objects that have had contact with cat feces. The infection also can be acquired from eating raw or partially cooked meat, especially chicken, pork, lamb or venison.

While eating infected meat easily spreads Toxoplasma from animal to animal, related parasites have highly restricted life cycles and require that a specific carnivore eat a specific herbivore for transmission to occur.

Toxoplasma also is unusual in that worldwide there are only three main strains, whereas related parasites typically have many distinct strains. Research has shown that the three strains are highly similar genetically and arose from a single mating event between two parent parasites. In the present study, members of Sibley’s laboratory, working closely with colleagues at Cambridge University and the University of Georgia, determined how long ago that mating event occurred. They first estimated the rate at which mutations arise in Toxoplasma. They then sequenced a select set of genes from the three strains to determine how many mutations were present. That data, along with estimates of the mutation rate, indicate that the three strains arose from a common ancestor no more than 10,000 years ago.

"That’s the blink of an eye in evolutionary time," says Sibley.

During that blink, however, the new strains managed to infect a wide range of animal species and spread worldwide, suggesting that they had undergone some fundamental change. To explain how that happened, Sibley and his colleagues hypothesized that the parasite’s life cycle had been altered, facilitating much more efficient spread.

The investigators compared the young strains to less common, older strains of Toxoplasma. They found that the young strains have a heightened ability to infect animals that have eaten the cysts that form in the meat of infected animals. Normally such tissue cysts are infectious only to a single species of animal, typically a carnivore that serves as the definitive host where sexual replication occurs. The ability of the young Toxoplasma strains to bypass this restriction allows them to infect many different hosts, where they again form cysts and reproduce asexually.

"Direct oral infectivity after eating tissue cysts is seen only in Toxoplasma and this trait is exemplified by these young strains," says Sibley. "This strongly suggests that the unique combination of genes passed along during that one mating event endowed the three young strains with an ability to more effectively spread throughout the food chain."

The findings demonstrate that changes in the infectiousness of parasites can occur not just through new mutations but also through a reshuffling of existing genes.

"This was a big surprise," says Sibley. "We have always appreciated that genetic recombination could cause subtle changes in an organism, but this is an extreme change: It produced a completely new lifestyle and removed a major barrier to infection."

Sibley and his colleagues now are studying genetic differences between the young and old strains of the parasite to learn more about how the newly derived strains can infect so many hosts.

"If one wanted to make a vaccine against this parasite, those genes and their products might be good ones to target," says Sibley.


###
Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD. Recent expansion of Toxoplasma through enhanced oral transmission. Science, Jan. 17, 2003.

Funding from the National Institute of Allergy and Infectious Diseases, the Biotechnology and Biological Sciences Research Council And the Burroughs Wellcome Fund supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>