Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes which facilitate the industrial use and application of starch

16.01.2003


The cosmetic, textile, and food industries and even the construction industry use starch, the main energy reserve of plants, as a biodegradable and renewable substance for a variety of applications. To get to know the metabolism of this carbohydrate better and thus facilitate its industrial use and application, Milagros Rodríguez López proposed, in her PhD thesis, the identifying and isolating of the enzyme (or enzymes) responsible for the degradation activity of the precursor molecule for starch: ADP glucose.

This PhD work was directed by Francisco Javier Pozueta Romero at the Institute of Agrobiotechnology and Natural Resources (IARN), a centre of investigation jointly run by Consejo Superior de Investigaciones Científicas (Council for University Scientific Research), the Navarre Government and Navarre Public University.

Considerable quantity of starch in plants



Currently, practically all of industry uses starch and/or its derivatives in some way or another. Starch is used, amongst other things, for the manufacture of biodegradable photographic films, in adhesives, packing materials, detergents, paints and plastics; medical care products, shampoos, creams and lotions, cleansing products and cosmetics; or in the food and drinks industries for producing thickening agents which enhance the uniformity, stability and consistency of foodstuffs.

The widespread use of starch in industry explains the numerous research projects being carried out in order to better understand the biosynthesis process of the carbohydrate in plants and of its equivalent in bacteria: glycogen. However, although many studies have been carried out on starch is formed, what substances impede its synthesis have not been investigated in any depth.

Barley leaves

The conclusion of this doctoral thesis is that, both the accumulation of starch in plants and of glycogen in bacteria is highly determined by the enzymatic activities that synthesise ADP glucose and by those that degrade it. Moreover, in the opinion of Milagros Rodríguez López, ADP glucose is not just a precursor molecule for glycogen and starch, but plays a versatile role at the point of diversification of several metabolic routes.

The authoress’ research has identified two proteins as being possibly responsible for the breaking down of ADP glucose and which, thus, on the breaking up of the ADP glucose molecule, impede the formation of starch in plants. Professor Milagros Rodríguez chose to do the tests on barley leaves as it is in this tissue that enzymatic activity is highest.
The objective then was to isolate the enzyme or enzymes responsible for this enzymatic activity.

In order to carry this out, various techniques were used such as ultracentrifuging or precipitation with ammonium sulphate in order to isolate enzyme or enzymes responsible. According to the results, there are a number of isoforms responsible for the hydrolysis of ADP glucose in the higher plants, which impede the biosynthesis of starch.

As a result of this research, two enzymes have been identified as being possibly responsible for the enzymatic activity: NPP1 (Nucleotide Phosphatase Phosphodiesterase 1) and NPP2 (Nucleotide Phosphatase Phosphodiesterase 2). Subsequently, molecular biology work was carried. Thus the gene sequences were identified and a way of confirming whether these proteins were really responsible for the enzymatic activity or not.

Iñaki Casado Redin | BasqueResearch
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>