Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data presented on first cloned, double knock-out miniature swine

15.01.2003


Important goal achieved in potential animal-to-human organ transplantation



In a session today at the annual meeting of the International Embryo Transfer Society (IETS), Randall Prather, Ph.D., Distinguished Professor of Reproductive Biotechnology at the University of Missouri-Columbia, announced the successful cloning of the first miniature swine with both copies of a specific gene "knocked out" of its DNA. The ultimate goal of this research, which is being conducted in partnership with Immerge BioTherapeutics, Inc (a BioTransplant Incorporated (Nasdaq:BTRN)/Novartis Pharma AG (NYSE:NYS) joint venture company), is to develop a herd of miniature swine that can be used as a safe source for human transplantation, a process known as xenotransplantation.

"The fact that we have been able to clone this particular strain of miniature swine with both copies of the gene that produces GGTA1 knocked out is a very exciting step for the field of xenotransplantation," said Dr. Prather, a researcher in MU’s College of Agriculture, Food and Natural Resources. "Organs from regular swine are too large for human transplant, and this particular strain of miniature swine has been refined for years solely for its potential use in humans."


New options for organ sources are desperately needed to treat the rapidly increasing number of critically ill people on the transplant waiting list (more than 80,000 in the U.S. alone). Researchers have targeted the pig as the best potential candidate for an alternative organ source because of the similarity between human and pig organs and the relative ease of breeding. However, the massive rejection response mounted by the human immune system has been a major hurdle in this research.

A key player in this rejection process is the gene called a-1,3-galactosyltransferase or GGTA1 that produces a sugar molecule. When a foreign organ is introduced, human antibodies attach to the sugar molecule on the surface of pig cells produced from the action of the GGTA1 molecule, thus killing the organ. With both copies of this gene eliminated, the antibodies cannot attach, halting the early rejection process.

Dr. Robert Hawley and scientists at Immerge, in collaboration with Dr. Kenth Gustafsson, first identified the gene that produces GGTA1 and eliminated, or knocked it out, of the DNA of the cells from the miniature swine. This genetic material was then sent to Dr. Prather’s lab, where Dr. Liangxue Lai and colleagues implanted it into an egg that had its DNA eliminated. The egg was stimulated to begin dividing and was later implanted into a sow. Prather and Immerge announced in January 2002 in the journal Science that they had successfully cloned the world’s first single knock-out miniature swine. The genetic material from these swine was then re-engineered with the aim of knocking out the second copy of this critical gene. These cells were then subjected to another round of nuclear transfer cloning, leading to the birth of the double knock-out piglet on November 18, 2002.

In addition to the modified genetics, the Immerge miniature swine also have other important advantages as potential transplantation candidates.

"The strain of swine we are working with seems to be incapable of transmitting Porcine Endogenous Retrovirus (PERV) to human cells in culture, as we reported in March 2002 in the Journal of Virology," said Julia Greenstein, Ph.D., CEO and President, of Immerge. Unlike other viruses, which can be eliminated either through breeding or raising pigs in a clean lab environment, multiple copies of PERV form part of the normal genomic DNA of pigs and are therefore passed from one generation to the next "Although the risk of any harm posed by PERV to xenotransplant recipients may be purely theoretical, use of this line of miniature swine would help minimize this particular risk of this new technology," said Dr. Greenstein.


The University of Missouri-Columbia has a long-standing research collaboration with Immerge and BioTransplant Incorporated in the field of porcine genetic engineering. This close collaboration has allowed this important research to progress at an accelerated pace. The current collaboration is supported by a National Institutes of Health Small Business Innovative Research grant.

Immerge BioTherapeutics was formed on September 26, 2000, as a joint venture between Novartis Pharma AG and BioTransplant Incorporated. The company, which began operations on January 2, 2001, focuses its research efforts toward developing therapeutic applications for xenotransplantation. The name of the company derives from its use of immunology to address the challenges of conducting transplants between species.

Susan Hayes | EurekAlert!

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>