Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From sardines to anchovies and back in 50 years

10.01.2003


Local fisheries part of bigger cycle affecting entire Pacific Ocean



In the late 1930’s, California’s sardines supported the biggest fishery in the western hemisphere, with more than half a million tons of fish caught each year. By the mid-1950s, the sardines had virtually disappeared. Although fishing pressure may have played a part in this process, new research published in the current issue of Science indicates that the sardines’ demise was part of a 50-year cycle that affects not just California, but the entire Pacific Ocean.

Francisco Chavez, a biological oceanographer at the Monterey Bay Aquarium Research Institute (MBARI) and lead author of the study, combined a hundred years of data on physical oceanography, marine biology, and meteorology to examine long-term cycles in different parts of the Pacific Ocean. He points out that sardine catches in California, Japan and Peru followed parallel trends, despite being on opposite sides of the ocean and facing different amounts of fishing pressure. More importantly, when sardine catches in both areas went bust, anchovy catches boomed. Chavez’s research indicates that this alternation between a "sardine regime" and an "anchovy regime" involves much more than just fisheries. As he puts it, "Fish in many parts of the Pacific are marching to the same drummer. This same drummer is causing changes in ocean circulation and in the global carbon cycle. What we’ve been trying to find out is, what is the drummer, and is the beat going to change?"


To this end, Chavez gathered data from fellow scientists, not just on fisheries biology, but on sea-surface temperature, elevation, and currents, atmospheric carbon dioxide concentrations and circulation, global air temperature, and more. Despite considerable year-to-year variability, Chavez found parallel trends across the entire Pacific when he looked at three-year averages and subtracted out gradual long-term increases (such as that of carbon dioxide). These trends show that sardine and anchovy regimes alternate about every twenty five years, and that the most recent shift (from sardines to anchovies) occurred in the late 1990’s.

These cycles are similar to the familiar El Niño and La Niña events, but take place over longer time periods and have greater effects at mid- and high latitudes. For example, average conditions during a sardine regime are analogous to those during an El Niño event, when coastal waters off of Peru and California become warmer than usual. Less nutrient-rich deep water is brought the surface, so phytoplankton populations remain relatively low. This affects the entire marine food web, resulting in fewer zooplankton, anchovies, seabirds, and even salmon and rockfish. In contrast, the waters off Japan and the north-central Pacific respond oppositely, with increased productivity. Surprisingly, sardines tend to be more common on both sides of the north Pacific during these periods. During an anchovy regime, all of these trends are reversed.

Chavez hopes that by studying these long-term cycles, scientists will be able to better understand the effects of human activities. A prime example is the demise of the sardines. Chavez comments, "At least for these fast-growing fish, commercial fisheries are not always the sole cause of the collapse." Similarly, he points out that studies of global warming based on data collected over several decades could be strongly influenced by these natural, multi-decadal oscillations.

Chavez admits that his article may be controversial and hopes that it will stimulate scientific discussion about these long-term cycles, and especially about their possible causes. He remarks, "During the peer review process for this paper, one reviewer called it imaginative. And it is. If we had the ocean wired with a network of instruments and ocean observatories, then we would need less imagination and could understand this a lot better."

Debbie Meyer | EurekAlert!
Further information:
http://www.mbari.org/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>