Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule helps pupils respond to light

10.01.2003


Researchers are reporting progress in understanding whether a second light-sensing pathway in mammals indeed contributes to the detection of ambient light for controlling body functions.



In an article published in the January 10, 2003, issue of the journal Science, the researchers report that the molecule melanopsin is necessary in order for the pupil to constrict properly in response to light, a function termed the pupillary light reflex.

The latest findings by Howard Hughes Medical Institute investigator King-Wai Yau at Johns Hopkins University and his colleagues from Imperial College in London and Brown University build on studies they published last year in which they traced the neural circuitry for this newly discovered light-sensing pathway that is distinct from the primary visual pathway.


In those studies, Yau and his colleagues showed that the neural circuitry is constructed of a small subset of intrinsically photosensitive retinal ganglion cells (RGCs) that carry visual signals from the eye to the brain. These RGCs project specifically to brain centers involved in circadian-pacemaker activity and the pupillary light reflex, accessory visual functions that do not require image-formation on the retina. Biological, or circadian, clocks operate on a roughly 24-hour cycle that governs sleeping and waking, rest and activity, body temperature, cardiac output, oxygen consumption and endocrine gland secretion. In mammals, the internal circadian clock resides in the brain, and sunlight is the cue that resets this clock daily.

Improved understanding of the circadian system could lead to better treatments for jet lag and depression, and may help optimize drug treatments affected by changes in hormone levels.

Although earlier studies had indicated that melanopsin was part of a light-sensing system, in the latest research Yau and his colleagues sought to demonstrate that the molecule is indeed required for the light-sensing ability of this system and that the system has a true physiological function.

They first developed a knockout mouse in which they completely replaced the melanopsin gene with a tracer gene. In initial studies, they found that although knocking out the melanopsin gene did not affect the genesis and wiring of the specific RGCs responsible for the light-sensing pathway, it did make the RGCs unresponsive to light.

"Determining that in such animals these specific retinal ganglion cells were still present but they became light-insensitive was crucial, because it told us, first, melanopsin is indeed required in order for these cells to be intrinsically light-responsive and, second, that whatever functional defect we found in the animal could be directly attributed to the loss of photosensitivity of these retinal ganglion cells rather than to elusive causes such as mis-wiring in the circuitry," said Yau.

To determine the physiological effect of the melanopsin-deficient cells, the researchers chose to measure how the pupils of the knockout mice constricted in response to a gradually increasing intensity of light, because this reflex is fast, precise and can be readily be quantified.

"In a normal animal, increasing the light intensity would progressively increase the constriction of the pupil, until it is no more than a pinhole," said Yau. "But in the knockout animals, while the pupil begins to constrict normally in dim light, at higher intensities of light the reflex seems to ’hang.’ That is, the pupil never constricts down to the same small size as in the normal mouse."

Since the knockout mice still exhibited some pupillary light reflex, albeit diminished, Yau and his colleagues suspected that the melanopsin-dependent reflex might be complemented by the rods and cones, the photoreceptors for the conventional, image-forming visual pathway. Thus, they tested the pupillary reflex in another strain of mouse that have lost the rods and cones due to degeneration.

"We found in these mice that the threshold of the pupil reflex is elevated tremendously," said Yau. "However, as you increase the light intensity, eventually the pupils start to constrict; and at high intensities, it constricts to the normal level." Thus, the pupillary light reflex involves two complementary mechanisms, one being the rod/cone system, and the other being the melanopsin-associated system.

"There is overlap between the two systems," said Yau. " The rods and cones are responsible for the high sensitivity of the reflex, but they cannot complete the job," said Yau. "On the other hand, while the melanopsin system is not highly sensitive to light, it alone can nonetheless bring the reflex to completion."

Could there be yet a third mechanism that aids in the reflex? Yau said that his group’s analysis of the characteristics of the two mechanisms suggests that a third mechanism would have a negligible effect, if it exists at all. In further studies, they plan to produce a mouse lacking both the rod/cone system and the melanopsin-dependent system, to determine whether the mice would lack the pupillary light reflex completely.

"For us, the most important question was whether this melanopsin pathway is of any physiological importance," said Yau. "Now we have shown that it is, based on the simple pupil reflex. The next step will be to examine closely other, more complex physiological functions, such as circadian photoentrainment."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>