Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drop of ocean water tells a story

20.12.2002


Scientists are still learning what’s in a drop of ocean water, according to this week’s Nature Magazine. And the answers have implications for the whole planet, says co-author Craig Carlson, an oceanographer at the University of California, Santa Barbara. Carlson is an assistant professor in the Department of Ecology, Evolution and Marine Biology.



About ten thousand bacterioplankton of the type SAR 11 are found in every drop of seawater. And yet, as explained in the article, which gives the first accurate quantitative assessment of SAR 11, scientists are only beginning to understand what these organisms do.

The article is the result of a collaborative effort between Craig Carlson, and his lab, and Stephen Giovannoni of Oregon State University (OSU) and his lab, including first author Robert Morris. They are attempting to better understand the role of microbes in natural systems. The work was conducted under the Oceanic Microbial Observatory project, a joint effort between UCSB, OSU and the Bermuda Biological Station for Research that was initiated in 1999 by the National Science Foundation.


"Microbes like bacterioplankton are important biogeochemical agents," explained Carlson. "Over geologic time, they have played an important role in altering the chemical nature of the earths’s environment, allowing for the evolution of plants and animals. Without them, we would have no oxygen to breathe, organic matter would not be degraded, and the cycling of life’s essential nutrients would cease."

In a world that appears to be dominated by large organisms (i.e.things we can see), some might ask why we care about microbes –– don’t they just make us sick? The fact is that only a small percentage of microbes are pathogenic; most are beneficial to life on earth, according to Carlson. The living biomass and processes that drive the earth’s biosphere are really in the hands of the microbes.

For decades marine scientists have been able to enumerate bacterioplankton and scientists have known that they are important to the cycling of nutrients in the ocean. They have also known that there are many types (species, strains) of bacterioplankton in the oceans. But, until recently, the ability to distinguish one species from another in a quantitative manner was very limited. As a result, most oceanographers treat the bacterioplankton as a ’black box.’ "However, we know that all bacterial species do not function the same way, so the ’black box’ approach grossly oversimplifies microbial contributions," said Carlson. "One of the objectives of this study was to ’open up’ the ’black box’ and assess quantitatively how a specific group of bacterioplankton, called SAR 11, contribute to the total bacterial pool in the open ocean."

SAR 11, were first identified in the early 1990s by Steve Giovannoni from samples collected in the Sargasso Sea. They were identified qualitatively via gene cloning as a major group of uncultured bacterioplankton. Until now scientists haven’t had good quantitative information about how this specific group of bacteria contributed to the total oceanic bacterial pool. The use of molecular techniques in combination with microscopy now allows for the identification of certain bacteria types. The scientists found that the bacterioplankton SAR 11 comprises as much as 50 percent of the total surface microbial community (from zero to 140 meters below the surface) and 25 percent of the rest of the water column down to the bottom of the sea.

They were able to do this using a technique called "FISH," short for fluorescence in situ hybridization. The SAR 11 FISH probes, developed in Giovannoni’s lab, are short DNA sequences that have a fluorescent tag on them. Water drops containing one hundred thousand to millions of many different types of bacteria are concentrated onto a filter. Under special laboratory conditions the fluorescent DNA probe sticks to the targeted SAR 11 bacterial sequence and lights up like a Christmas tree bulb when exposed to a certain wavelength of light, and thus the SAR 11 can be counted.

Carlson said that "FISH" probe allows scientists to gain qualitative and quantitative information from a mixed bag of bacteria. "We can tell who they are and how many there are," said Carlson. "By sheer numbers, SAR 11 is important," said Carlson. "They are one of the most successful groups of bacteria in the ocean. The next step is to learn what they do. Identification is a first big step that allows us to assess their particular role in nature."


###
Craig Carlson can be reached at (805) 893-2541 or carlson@lifesci.ucsb.edu

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>