Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientists unlock secret of calcium waves in cells

12.12.2002


Key step in process of developing targeted therapeutics to combat epilepsy



Scientists from Toronto’s Princess Margaret Hospital are able to depict for the first time how an important molecule called IP3 and its receptor interact to control calcium levels in cells, a process that is vital to normal brain function.

The study is published in this week’s edition of the international scientific journal Nature, and is a collaboration between scientists at Princess Margaret Hospital’s research arm, Ontario Cancer Institute (OCI), the University of Toronto, and the University of Tokyo.


The IP3 molecule is one of a dozen molecules within cells that act as messengers, translating chemical stimulus outside of the cell into a physiological response-for instance, an increase in glutamate triggers memory. The translation by the IP3 molecule is accomplished by setting waves of different calcium levels within the cell, with the receptor regulating the ebb and flow of these calcium waves. The process is critical to normal brain function, playing an important role in memory and learning. It is also believed to play a key role in epilepsy, since mice lacking IP3 receptors suffer epileptic seizures and improper brain function.

The scientists examined the atomic structure of the IP3 molecule and its receptor, and now know exactly how they bind together. Having an accurate 3D picture of the molecule-receptor interaction may aid in the design of drugs that either enhance or block the process of setting calcium levels in cells.

"Imagine the receptor as a doorway through which calcium passes in order for the cells to react," said Ivan Bosanac, lead author of the study, researcher at OCI, and Ph.D. candidate at the University of Toronto. "What we’ve done is describe the doorway’s keyhole and how the IP3 molecule acts as the key to unlock it."

"This finding represents an important milestone in developing potential drug therapies that could one day combat diseases such as epilepsy," said Dr. Mitsu Ikura, Senior Scientist with OCI, and Professor of Medical Biophysics at University of Toronto. "Although development of such therapies is years away and will require much more research, understanding how the molecule IP3 binds with its receptor is critical to regulating calcium levels in cells and ensuring normal brain function."

The research was supported by a fellowship from the Canadian Institutes of Health and Research, a grant from the Howard Hughes Medical Institute and by a grant from the Institute of Physical and Chemical Research (RIKEN), in Japan. Dr. Ikura is a Canadian Institutes of Health Research Investigator. His laboratory at Princess Margaret Hospital is also supported by the George and Helen Vari Foundation.

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are teaching hospitals affiliated with the University of Toronto.

Vince Rice | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>