Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On chip separation: large molecules pass the speed camera first

10.12.2002


What molecule or particle passes the finishline first? A good way to split a fluid sample into its separate parts is: organize a contest in a micro-channel. The largest parts will pass the optical detector first, the smaller ones follow at short distance. This principle of ‘hydrodynamic chromatography’ is now also possible on a chip. ‘On-chip’ separation is faster, needs tiny samples and uses minimum of harmful solvents. Marko Blom developed this separation chip within the MESA+ research institute of the University of Twente. He presents his PhD-work on December 13, 2002.



The separation channel Blom has developed is not deeper than one micron, it is one millimeter in width and some six to eight centimeters long. It has been fabricated in silicon or silicate glass. Thanks to this compact geometry, the separation is fast: bigger molecules move faster, smaller ones follow. A light-sensitive cell detects the fastest ones first. Colour characteristics provide additional information about the particle or molecule: therefore at the start of the ‘race’, fluorescent markers can be added to the fluid, for example.

Hydrodynamic chromatography (HDC) is a well-known separation technique for particles and large molecules, but the resolution of current methods is far from optimal. HDC is usually applied in a fluid column, filled with non-porous particles that create, with the tiny spaces inbetween, the same effect as a narrow channel. On-chip separation results in a better resolution because the geometry is better defined than the pores between the particles in a conventional column, that are divided in a rather arbitrary way. Within just a few minutes Blom can, for example, fully separate little polystyrene balls. The new chip is particularly interesting for analysis of large molecules like polymers. For biomolecules, it works as well: for example analysis of DNA-components.


Lab-on-chip
A microsystem like this new separation chip has more advantages than the ones mentioned above: it is possible to add all kinds of functionality. It is not just the separation itself that takes place on-chip, but also detection and fluid preparation can be done. Blom has built a with a viscosity sensor: a small bridge over the channel slightly disturbs the fluid. The difference in pressure can be detected optically. The system is a new lab-on-chip, systems that are for large amounts of analyses at the same time.

Blom’s research is part of the research orientation MicroChemical Systems, within the MESA+ research institute of the University of Twente in The Netherlands (www.mesaplus.utwente.nl). It has been financially supported by the Dutch Technology Foundation STW (www.stw.nl). Blom has done his research in close cooperation with the Polymer Analysis group of the University of Amsterdam.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>