Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thoughts on evolution arise from UH yeast study

29.11.2002


Novel Method of Creating New Species Observed in Laboratory Yeast



The sex life of yeast has University of Houston biologists fermenting new ideas about evolution and beer.

Researchers studying yeast reproductive habits have for the first time observed a rapid method for the creation of new species, shedding light on the way organisms evolve and suggesting possible ways to improve yeast biotechnology and fermentation processes used in beer and wine-making.


“Most models of speciation require gradual change over a very long period of time, and geographic or ecological isolation for a new species to arise,” says University of Houston biologist Michael Travisano. “Our study suggests that mating two separate species to produce hybrids can result in a new species readily and relatively quickly, at least in yeast, but possibly in other organisms as well.”

Travisano, an assistant professor in the UH Department of Biology and Biochemistry, says the findings extend the range of known mechanisms that cause reproductive isolation. The study appears in the Nov. 29 issue of the journal Science.

Duncan Greig, a postdoctoral researcher in Travisano’s lab, conducted experiments that put two different species of yeast together, Saccharomyces cerevisiae and Saccharomyces paradoxus. One way that yeast, a one-celled organism, can replicate is by producing spores. When spores from these two species joined, they produced hybrid offspring, similar to crossing a female horse with a male donkey and getting a mule.

Unlike mules, which are sterile, a few of the yeast hybrids were fertile. Those hybrids produced viable offspring when they were allowed to “autofertilize,” which means an individual’s spores fertilized themselves to produce an offspring without involving another yeast cell.

However, the hybrids did not produce viable offspring when mated back to their parent species.
“Other labs have generated hybrids such as these before, but we went a step further and crossed the fertile ones back with their parents,” Travisano says. While there are various definitions of a species, Travisano says individuals that are fertile with themselves and isolated from their parents certainly qualify as a new species. He estimates the experiment took about a month to generate the new yeast species.

Understanding why some hybrids are fertile and others are not is a key question, according to Greig and Travisano, and may have implications for the evolution of species besides yeast.

“What are the genetic or molecular mechanisms that make some hybrids sterile and others fertile and able to propagate as a new species? While our work was done with yeast, presumably the interactions that prevent or encourage speciation occur in other organisms as well,” Travisano says.

The method by which the hybrids replicated and formed a new species is called homoploid hybrid speciation, in which the new hybrid species contain the same total amount of genetic material as the parental species. It is not found in any animal species and only very rarely among plants, Travisano says.

“We think it may be happening in nature, but this is the first time this mode of speciation has been observed in a microorganism such as yeast,” he says. “In terms of how we typically think of speciation, this method is pretty rare, which makes it kind of a surprise how easy it was to get it to work.” This method is in contrast with polyploid hybrid speciation, which occurs readily in plants and involves an increase of two or more times the genetic material in the new hybrid species than in the parental species, Travisano says.

He adds that the yeast’s ability to speciate so quickly in the lab is due in part to its ability to autofertilize.
“Autofertilization is thought to be relatively common in wild yeast, but the natural history of yeast is not very well understood,” he says.

One application of the research may be to benefit industries that utilize yeast in fermentation.

“If we put these hybrid individuals in various environments, we’d like to see whether they do better in some environments than their parental species,” Travisano says. For example, one parent species thrives in cold temperatures and the other parent does well in the heat – what kind of environment might the hybrid prefer?
“Presumably you might be able to optimize wine or beer-making by genetically engineering a yeast species specific to your needs,” Travisano says. “If you’re interested in yeast biotechnology, studies such as this could tell you something about the nature of your yeast and how to engineer it.”

Travisano’s and Greig’s research was funded by the Wellcome Trust and was done in collaboration with Edward J. Louis and Rhona H. Borts at the University of Leicester.


Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>