Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thoughts on evolution arise from UH yeast study

29.11.2002


Novel Method of Creating New Species Observed in Laboratory Yeast



The sex life of yeast has University of Houston biologists fermenting new ideas about evolution and beer.

Researchers studying yeast reproductive habits have for the first time observed a rapid method for the creation of new species, shedding light on the way organisms evolve and suggesting possible ways to improve yeast biotechnology and fermentation processes used in beer and wine-making.


“Most models of speciation require gradual change over a very long period of time, and geographic or ecological isolation for a new species to arise,” says University of Houston biologist Michael Travisano. “Our study suggests that mating two separate species to produce hybrids can result in a new species readily and relatively quickly, at least in yeast, but possibly in other organisms as well.”

Travisano, an assistant professor in the UH Department of Biology and Biochemistry, says the findings extend the range of known mechanisms that cause reproductive isolation. The study appears in the Nov. 29 issue of the journal Science.

Duncan Greig, a postdoctoral researcher in Travisano’s lab, conducted experiments that put two different species of yeast together, Saccharomyces cerevisiae and Saccharomyces paradoxus. One way that yeast, a one-celled organism, can replicate is by producing spores. When spores from these two species joined, they produced hybrid offspring, similar to crossing a female horse with a male donkey and getting a mule.

Unlike mules, which are sterile, a few of the yeast hybrids were fertile. Those hybrids produced viable offspring when they were allowed to “autofertilize,” which means an individual’s spores fertilized themselves to produce an offspring without involving another yeast cell.

However, the hybrids did not produce viable offspring when mated back to their parent species.
“Other labs have generated hybrids such as these before, but we went a step further and crossed the fertile ones back with their parents,” Travisano says. While there are various definitions of a species, Travisano says individuals that are fertile with themselves and isolated from their parents certainly qualify as a new species. He estimates the experiment took about a month to generate the new yeast species.

Understanding why some hybrids are fertile and others are not is a key question, according to Greig and Travisano, and may have implications for the evolution of species besides yeast.

“What are the genetic or molecular mechanisms that make some hybrids sterile and others fertile and able to propagate as a new species? While our work was done with yeast, presumably the interactions that prevent or encourage speciation occur in other organisms as well,” Travisano says.

The method by which the hybrids replicated and formed a new species is called homoploid hybrid speciation, in which the new hybrid species contain the same total amount of genetic material as the parental species. It is not found in any animal species and only very rarely among plants, Travisano says.

“We think it may be happening in nature, but this is the first time this mode of speciation has been observed in a microorganism such as yeast,” he says. “In terms of how we typically think of speciation, this method is pretty rare, which makes it kind of a surprise how easy it was to get it to work.” This method is in contrast with polyploid hybrid speciation, which occurs readily in plants and involves an increase of two or more times the genetic material in the new hybrid species than in the parental species, Travisano says.

He adds that the yeast’s ability to speciate so quickly in the lab is due in part to its ability to autofertilize.
“Autofertilization is thought to be relatively common in wild yeast, but the natural history of yeast is not very well understood,” he says.

One application of the research may be to benefit industries that utilize yeast in fermentation.

“If we put these hybrid individuals in various environments, we’d like to see whether they do better in some environments than their parental species,” Travisano says. For example, one parent species thrives in cold temperatures and the other parent does well in the heat – what kind of environment might the hybrid prefer?
“Presumably you might be able to optimize wine or beer-making by genetically engineering a yeast species specific to your needs,” Travisano says. “If you’re interested in yeast biotechnology, studies such as this could tell you something about the nature of your yeast and how to engineer it.”

Travisano’s and Greig’s research was funded by the Wellcome Trust and was done in collaboration with Edward J. Louis and Rhona H. Borts at the University of Leicester.


Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>