Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproduction of fungus depends on ...

15.11.2002


A research team of the Department of Applied Chemistry of the University of the Basque Country has been studying the reproduction of funguses. In the laboratory of Unai Ugalde, they have studied and identified a molecule that is essential in the growing of fungus.



It is already known that funguses grow in several places, but the factors that affect their growing are still unknown. Funguses grow through hypha, that is, small filamentous. However, in certain situations they produce spores that later are expanded through the air. Nevertheless, in order to form spores, there must be certain conditions in the environment. For example, wind is essential in order to produce an effective reproduction of fungus, but nutrients, light and other factors are also necessary. Scientists have been studying since many years trying to discover which are those other factors, but there was still a factor to be discovered.

Eight years ago, the team of Unai Ugalde proposed that the missing factor to explain the reproduction of funguses was a molecule that was produced by the fungus itself, but it was unknown. However now, after so many years of research, they have found out the molecule and its structure. This molecule is produced in very small quantities and for that reason it has been necessary to use very complex working methodologies in order to identify it. Furthermore, this molecule has been the first one of a molecule family that was not identified yet with similar functions to hormones.


That molecule presented in the magazine has been called as conidiogen. This molecule is effective in very low concentrations and that is its main characteristic. For example, antibiotics produced by funguses usually appear in larger quantities, approximately a thousand times more than the conidiogen.

This type of molecules can have a significant effect in the control of fungus reproduction. The research of those molecules can lead to drugs to cure diseases caused by funguses or to the industrial reproduction of funguses, etc. Therefore, Ugalde confirmed the intention to continue working in the study of those types of molecules.

Garazi Andonegi | alfa
Further information:
http://ec.asm.org/cgi/content/abstract/1/5/823

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>