Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting bacteria in space: The good, the bad and the unknown

14.11.2002


Bacteria in space, beware. New technology to monitor and identify bacteria is in the works.



Dr. George E. Fox and Dr. Richard Willson, researchers on the National Space Biomedical Research Institute’s immunology and infection team, have developed a new technology to characterize unknown bacteria. Its immediate application will be for identifying bacteria in space, but it will eventually aid in diagnosing medical conditions and detecting biological hazards on Earth.

“Understanding the bacterial environment is important for astronauts’ health,” said Fox, professor of biology and biochemistry at University of Houston. “Astronauts spend months in the same quarters, breathe recycled air and potentially drink recycled water; conditions that create a bacterial breeding ground. Additionally, the space environment might also have some unexpected health considerations.”


Studies have shown that space conditions suppress the human immune system, making the body more susceptible to infection. Further, weightlessness and higher levels of radiation may increase the mutation rate in bacteria. This could result in making some organisms more resistant to antibiotics or perhaps causing others that are normally harmless to become infectious.

“Because of space’s unidentified effects on bacteria and the immune system, we don’t know which organisms will cause problems,” Fox said. “However, we have developed a technique to determine an organism’s approximate identity.”

Their approach is based off the bacterial tree of life, which is arranged according to similarities in organisms’ DNA sequences. Organisms whose DNA sequences are closely matched are more closely related than organisms whose DNA sequences are less similar. Fox and Willson have developed a method to identify the DNA sequences that are unique to small groups of bacteria.

“Current detection systems mandate that you test for an exact organism. If a problem organism is similar but not identical to the organism you are testing for, the test will show up negative,” Fox said. “However, with our system, astronauts would be able to pinpoint an organism’s family and significantly narrow down the possibilities of its identity.”

Once Fox and Willson’s device identifies the problem organism, scientists can predict the bacteria’s source, like a faulty air filter or a water purifier, and fix the defective instrument for future missions.

Any kind of bacterial buildup should be avoided in the spacecraft.

“We are not specifically looking for deadly mutated bacteria,” Fox said. “We are more concerned about preventing everyday infections because, if you get sick in space, you don’t have a hospital around the corner for treatment. Our goal is to avoid infections with routine monitoring to keep bacteria levels low in the first place.”

The routine monitoring of bacterial levels is the second component of Fox and Willson’s research. Because of limited laboratory space and chemical availability in spacecrafts, they are designing an easy-to-use monitoring method for bacteria levels. Astronauts would filter the air or water, or swab a surface, to obtain the bacterial sample, and then they would test the sample for high levels of certain organisms that would indicate contamination.

“The tool will provide an early warning that the air or water purification system might not be working properly, allowing for needed repairs,” said Fox. “The routine monitoring system and the bacterial identification device will help astronauts stay healthy during their time in space.”


The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.


Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=39
http://www.nsbri.org/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>