Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists eavesdrop on cellular conversations by making mice ’glow’ with firefly protein

14.11.2002


Technology offers potential for treatment of cancer and other diseases



UCLA scientists coupled the protein that makes fireflies glow with a device similar to a home video camera to eavesdrop on cellular conversations in living mice. Reported in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences, their findings may speed development of new drugs for cancer, cardiovascular diseases and neurological diseases.

Led by Dr. Sanjiv Gambhir, UCLA associate professor of molecular and medical pharmacology and director of the Crump Institute for Molecular Imaging, the team’s research will allow scientists to study how cellular proteins talk to one another. These communications trigger changes that regulate a healthy body and cause disease when the signals go awry.


Gambhir and his colleagues used an optical camera equipped with the same kind of computer chip used in home video cameras to convert light into electrons. The team injected luciferase, the protein that makes fireflies glow, into cells, then injected the cells into the mouse.

They saw a remarkable sight. Each time two specific proteins spoke with each other, it activated the luciferase. The luciferase illuminated under the camera and produced brilliant flashes of light in the mouse.

"The mouse literally glowed under the camera," said Gambhir, a member of the UCLA Jonsson Cancer Center. "We ’heard’ the proteins ’talk’ by watching the communication pathways come to life."

"In the past, we had to extract an individual cell from an animal and use a microscope to study how cellular proteins communicated with each other," Gambhir said. "Now we can watch proteins in the same cell talking to each other in their natural setting."

"It’s similar to when the switchboard operator used to eavesdrop on people’s telephone conversations," he said. "Our technique enables us to listen in on multiple conversations in cells taking place deep within a living animal."

According to Gambhir, the discovery will enable researchers to create and evaluate new ways of treating human disease. "Human disease is often caused by a single misfiring during a series of intracellular communications," he said. "If we can understand and monitor what goes wrong, we may be able to develop drugs to block or improve cells’ ability to process their proteins’ internal conversations."

Cells rely on receptors that line their surfaces to communicate between the external world and their internal environment. Functioning like baseball catchers’ mitts, the receptors continually grab and release different hormones and molecules that influence cellular communication activity.

"A cell receptor has no voice or vocal cord," Gambhir said. "It must plug into the cell’s protein network to speak. One protein moves and acts on another, which sets off a chain reaction of conversations. Finally, the message reaches deep into the nucleus and tells the cells’ genes what to do."

Gambhir said that the new system could be used to test drugs that target protein-to-protein interactions in mice or advance medical research with a new breed of mice that indicates when intracellular interactions take place. The method is non-invasive and does not harm or cause pain to the mouse.

"This technique can help us better understand the processes of many human diseases," Gambhir said. "For example, we can image new drugs for cancer that halt cell division and actually see whether or not they work in the living body. If the drugs don’t stop cell growth, we can design better drugs and test them under the camera. The possibilities are endless."


The National Cancer Institute and Department of Energy funded the study. Gambhir’s co-authors included R. Paulmurugan from UCLA and Y. Umezawa from the University of Tokyo.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>