Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists eavesdrop on cellular conversations by making mice ’glow’ with firefly protein

14.11.2002


Technology offers potential for treatment of cancer and other diseases



UCLA scientists coupled the protein that makes fireflies glow with a device similar to a home video camera to eavesdrop on cellular conversations in living mice. Reported in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences, their findings may speed development of new drugs for cancer, cardiovascular diseases and neurological diseases.

Led by Dr. Sanjiv Gambhir, UCLA associate professor of molecular and medical pharmacology and director of the Crump Institute for Molecular Imaging, the team’s research will allow scientists to study how cellular proteins talk to one another. These communications trigger changes that regulate a healthy body and cause disease when the signals go awry.


Gambhir and his colleagues used an optical camera equipped with the same kind of computer chip used in home video cameras to convert light into electrons. The team injected luciferase, the protein that makes fireflies glow, into cells, then injected the cells into the mouse.

They saw a remarkable sight. Each time two specific proteins spoke with each other, it activated the luciferase. The luciferase illuminated under the camera and produced brilliant flashes of light in the mouse.

"The mouse literally glowed under the camera," said Gambhir, a member of the UCLA Jonsson Cancer Center. "We ’heard’ the proteins ’talk’ by watching the communication pathways come to life."

"In the past, we had to extract an individual cell from an animal and use a microscope to study how cellular proteins communicated with each other," Gambhir said. "Now we can watch proteins in the same cell talking to each other in their natural setting."

"It’s similar to when the switchboard operator used to eavesdrop on people’s telephone conversations," he said. "Our technique enables us to listen in on multiple conversations in cells taking place deep within a living animal."

According to Gambhir, the discovery will enable researchers to create and evaluate new ways of treating human disease. "Human disease is often caused by a single misfiring during a series of intracellular communications," he said. "If we can understand and monitor what goes wrong, we may be able to develop drugs to block or improve cells’ ability to process their proteins’ internal conversations."

Cells rely on receptors that line their surfaces to communicate between the external world and their internal environment. Functioning like baseball catchers’ mitts, the receptors continually grab and release different hormones and molecules that influence cellular communication activity.

"A cell receptor has no voice or vocal cord," Gambhir said. "It must plug into the cell’s protein network to speak. One protein moves and acts on another, which sets off a chain reaction of conversations. Finally, the message reaches deep into the nucleus and tells the cells’ genes what to do."

Gambhir said that the new system could be used to test drugs that target protein-to-protein interactions in mice or advance medical research with a new breed of mice that indicates when intracellular interactions take place. The method is non-invasive and does not harm or cause pain to the mouse.

"This technique can help us better understand the processes of many human diseases," Gambhir said. "For example, we can image new drugs for cancer that halt cell division and actually see whether or not they work in the living body. If the drugs don’t stop cell growth, we can design better drugs and test them under the camera. The possibilities are endless."


The National Cancer Institute and Department of Energy funded the study. Gambhir’s co-authors included R. Paulmurugan from UCLA and Y. Umezawa from the University of Tokyo.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>