Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists eavesdrop on cellular conversations by making mice ’glow’ with firefly protein

14.11.2002


Technology offers potential for treatment of cancer and other diseases



UCLA scientists coupled the protein that makes fireflies glow with a device similar to a home video camera to eavesdrop on cellular conversations in living mice. Reported in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences, their findings may speed development of new drugs for cancer, cardiovascular diseases and neurological diseases.

Led by Dr. Sanjiv Gambhir, UCLA associate professor of molecular and medical pharmacology and director of the Crump Institute for Molecular Imaging, the team’s research will allow scientists to study how cellular proteins talk to one another. These communications trigger changes that regulate a healthy body and cause disease when the signals go awry.


Gambhir and his colleagues used an optical camera equipped with the same kind of computer chip used in home video cameras to convert light into electrons. The team injected luciferase, the protein that makes fireflies glow, into cells, then injected the cells into the mouse.

They saw a remarkable sight. Each time two specific proteins spoke with each other, it activated the luciferase. The luciferase illuminated under the camera and produced brilliant flashes of light in the mouse.

"The mouse literally glowed under the camera," said Gambhir, a member of the UCLA Jonsson Cancer Center. "We ’heard’ the proteins ’talk’ by watching the communication pathways come to life."

"In the past, we had to extract an individual cell from an animal and use a microscope to study how cellular proteins communicated with each other," Gambhir said. "Now we can watch proteins in the same cell talking to each other in their natural setting."

"It’s similar to when the switchboard operator used to eavesdrop on people’s telephone conversations," he said. "Our technique enables us to listen in on multiple conversations in cells taking place deep within a living animal."

According to Gambhir, the discovery will enable researchers to create and evaluate new ways of treating human disease. "Human disease is often caused by a single misfiring during a series of intracellular communications," he said. "If we can understand and monitor what goes wrong, we may be able to develop drugs to block or improve cells’ ability to process their proteins’ internal conversations."

Cells rely on receptors that line their surfaces to communicate between the external world and their internal environment. Functioning like baseball catchers’ mitts, the receptors continually grab and release different hormones and molecules that influence cellular communication activity.

"A cell receptor has no voice or vocal cord," Gambhir said. "It must plug into the cell’s protein network to speak. One protein moves and acts on another, which sets off a chain reaction of conversations. Finally, the message reaches deep into the nucleus and tells the cells’ genes what to do."

Gambhir said that the new system could be used to test drugs that target protein-to-protein interactions in mice or advance medical research with a new breed of mice that indicates when intracellular interactions take place. The method is non-invasive and does not harm or cause pain to the mouse.

"This technique can help us better understand the processes of many human diseases," Gambhir said. "For example, we can image new drugs for cancer that halt cell division and actually see whether or not they work in the living body. If the drugs don’t stop cell growth, we can design better drugs and test them under the camera. The possibilities are endless."


The National Cancer Institute and Department of Energy funded the study. Gambhir’s co-authors included R. Paulmurugan from UCLA and Y. Umezawa from the University of Tokyo.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>