Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF launches massive international project to remap Tree of Life

13.11.2002


This “Early Bird” gets more than a worm

The early bird in this picture has found a cladogram, or a branching diagram that shows the evolutionary relationships between different groups of animals. “Early Bird” is a project recently funded by the National Science Foundation as part of a massive effort to map the Tree of Life. It will help determine how major groups of birds are related to each other – as well as to all living things.
Information about evolutionary relationships has helped scientists focus research; track the origin and spread of diseases; develop new medicines and agrochemical products; conserve species; and restore ecosystems, according to Shannon Hackett, PhD, Field Museum assistant curator of birds and an Early Bird principal investigator.

Illustration by M. Skakuj, Courtesy of The Field Museum


An ambitious, multi-disciplinary, 15-20 year program to fill in and flesh out the Tree of Life has just been launched by the National Science Foundation.
Field Museum scientists will help lead three of the seven grants recently awarded to researchers around the world to construct a new framework for understanding the evolutionary relationships between all species, extinct and living.

These three projects (listed below) will focus on birds, spiders, and archosaurs (birds, dinosaurs, pterosaurs and crocodiles). They represent more than half the $12 million that NSF awarded for the first year of the Assembling the Tree of Life (AToL) program.


Darwin’s inspired vision of a grand Tree of Life “with its ever-branching and beautiful ramifications” has challenged scientists for generations. He speculated that all life forms – from the smallest microorganism to the largest vertebrate – are genetically related in a vast evolutionary tree. The tree imagery has prompted scientists to classify all organisms into groups and discern patterns of evolutionary and historical relationships that explain the similarities and differences between them.

Today, many branches of the Tree of Life remain unanalyzed, even unknown. AToL will address this problem, incorporating the flood of new information from genetic studies, fieldwork discoveries, and inventories of the earth’s biota with existing information.

Phylogenetic information has proven useful in many ways, such as helping scientists focus biological research; track the origin and spread of diseases; develop new medicines and agrochemical products; conserve species; control invasive species biologically; and restore ecosystems.

“Progress in many research areas, from genomics to evolution, is being encumbered by the lack of a rigorous framework of evolutionary relationships,” says Shannon Hackett, PhD, Field Museum assistant curator of birds and AToL investigator. “The conceptual, computational and technological tools are now available to resolve most, if not all, major branches of the Tree of Life.”

AToL’s task will require a sustained effort by large teams of scientists working across disciplines, including taxonomy, paleontology, phylogenetics, computer science, statistics, anthropology, ecology, physiology, and developmental and molecular biology.


Programs in which Field Museum scientists will participate

1. Early Bird ($2 million)

Early Bird will determine the evolutionary relationships among major groups of birds. These relationships will serve as a comparative framework with which to organize and understand the vast amount of information already available on avian ecology, evolution, physiology and behavior.

The project will generate large amounts of DNA sequence data for all major avian lineages (approximately 20,000 base pairs for 500 species). A rapidly expanding suite of computational tools will be used to analyze this evidence and determine patterns and evolutionary relationships. The data will be made accessible to other researchers and the general public through a website with progress reports and interactive educational tools.

The impact of this project on science and society will be far reaching, says Hackett, a principal investigator on Early Bird: “Birds are among the most prominent and engaging creatures in most ecosystems. They have been the subject of an extraordinary number and diversity of scientific studies that figure largely in our understanding of the natural world and humanity’s place in it.

“Birds’ position high in many food chains, together with their great mobility, makes them sensitive indicators of environmental quality,” she adds. “Furthermore, the monitoring of bird populations is widely used to set conservation and management priorities.”

Partners include Australian Natural Wildlife Collection, The Field Museum, Louisiana State University, Museum Victoria (Melbourne), Smithsonian National Museum of Natural History, University of Florida, University of Glasgow and Wayne State University.

2. Spider Phylogeny ($2.7 million)

Phylogeny is the study of the evolution of a genetically related group of organisms. This project will produce a map of the deepest branches of evolutionary relationships between spiders by combining a massive amount of newly generated comparative genomic data with new and re-assessed data on morphology and behavior.

Spiders are among the oldest and most diverse groups of organisms, with fossils dating back 380 million years and a current diversity of more than 37,500 described species. Without spiders, insect pest populations would soar, and humans would be greatly affected.

“We’ll sequence the DNA of representative samples of at least 500 spiders, and also assemble morphological and behavioral data on those same spiders,” says Field Museum assistant curator of insects Petra Sierwald, PhD, and a principal investigator on this project. “Then we’ll combine and analyze the resulting large data matrices using new computer software, designed in large part by members of the group.”

Partners include several American museums and universities (American Museum of Natural History, The Field Museum, George Washington University and Smithsonian National Natural History Museum and others), as well as institutions in Denmark, Spain and Argentina.

3. Archosaur Phylogeny ($2 million)

This project will attempt to uncover the evolutionary patterns among archosaurs, focusing on theropods. Archosaurs vary tremendously, from marine crocodiles to bipedal, flying birds.

“They’re arguably the most dominant group of terrestrial vertebrates from the Triassic to the present and have a well-sampled fossil record,” says Field Museum assistant curator of dinosaurs Peter Makovicky, PhD, and a principal investigator on this project.

Nevertheless, few have studied the relationships within the major groups of archosaurs. Many tantalizing questions – such as the exact origin of modern birds – remain to be answered.

Working with Early Bird, scientists will create a survey of molecular and morphological data. This will form the core of an interactive online database of systematics data, images of characters and organisms, literature, and links to other databases. Morphological and molecular data from specimens housed in collections around the world will be compiled into this supermatrix.

Partners include American Museum of Natural History, Carnegie Museum, Field Museum, George Washington University, Royal Ontario Museum, University of California Riverside and University of Iowa.

Greg Borzo | alfa
Further information:
http://www.nsf.gov/bio/pubs/awards/atol_02.htm
http://www.fmnh.org/exhibits/exhibit_sites/wis/main_page.htm.
http://www.fmnh.org/museum_info/press/press_treeoflife.htm

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>