Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it comes to sperm competition, size can matter — it’s the female who holds the aces

08.11.2002


Syracuse University researchers pick up where Darwin left off: Groundbreaking study to be published in the Nov. 8 issue of Science



When it comes to mating and determining whose sperm reaches the elusive egg, females control both the playing field and the rules of the game, according to a new study on male sperm competition vs. female choice to be published in the Nov. 8 issue of Science.
"Our study demonstrates, unambiguously, the active role females play in determining the conditions under which sperm compete inside the female reproductive tract," says Scott Pitnick, professor of biology at Syracuse University, who published the study with co-researcher Gary T. Miller, a postdoctoral research associate at SU. "It’s widely known that, throughout the animal kingdom, sperm cells evolve rapidly into some of the most outrageous variations in size and shape. Until now, we didn’t know why. Our study shows that it’s because of female choice. The shape and physiology of the female reproductive tract is driving this variation in sperm."

Most people are familiar with the elaborate competitions that occur between males before mating, such as the ritualistic clash of horns of Big Horn Sheep or the bloody battles between male elephant seals. However, relatively little is understood about how sperm compete after mating has occurred, says Pitnick, an evolutionary biologist who has been studying sexual selection and the nature of sex differences for more than 15 years. In a 1995 study published in Nature, he documented the longest sperm cell known to science. It belongs to a species of fruit fly called Drosophila bifurca and measures some two inches in length when fully uncoiled.



"It was once a widely held belief that males sacrificed quality for quantity when it comes to sperm production and the competition to fertilize eggs," Pitnick says. "In 1995, we documented exceptions to the rule. That finding led us to wonder why some species take the time to produce a few gigantic sperm when the majority seem content to spew out millions of tiny sperm."

Contrary to popular belief, females in most species are promiscuous, mating with more than one male during a single mating season, Pitnick says. Females of most species also have specialized sperm-storage organs where sperm from different males compete to emerge and race for the egg. Pitnick and Miller used populations of another species of fruit fly called Drosophila melanogaster to discover the nature of the relationship between sperm size, the size of female sperm-storage organs and successful fertilization. The researchers manipulated the populations and selected groups based on the length of sperm and the length of the female sperm-storage organs.

The result: All males competed equally well within females with short sperm-storage organs, but males with longer sperm out-competed their less endowed rivals within females sporting longer storage organs. The advantage to males of longer sperm increased with increasing length of the female tract. "This means," Pitnick says, "that the length of the sperm-storage organ is a mechanism dictating female choice among potential sires of her offspring. Females choose among males based on the length of their sperm. Long sperm tails are thus the post-copulatory, cellular equivalent of long peacock tail feathers."

The researchers’ conclusion was supported in a separate experiment in which evolving female sperm-storage organs were shown to drive the evolution of sperm length.

"Now that we know about sperm-female co-evolution, it’s important to ask what happens when populations are isolated from one another," Pitnick says. "Sperm from one population may become mismatched and thus reproductively incompatible with the females of the other population. This is where the rubber meets the road for speciation. The seemingly esoteric whimsy of female choosiness for longer sperm may have surprisingly important consequences for biodiversity."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu/

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New technology can detect anti-virus antibody in 20 minutes

25.05.2020 | Medical Engineering

ATLAS telescope discovers first-of-its-kind asteroid

25.05.2020 | Physics and Astronomy

Researchers develop high-performance cancer vaccine using novel microcapsules

25.05.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>