Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular pathway includes a ’clock’ that steers gene activity

08.11.2002


Understanding the timed messages within cells could lead to new medical treatments



Researchers from The Johns Hopkins University and other institutions have discovered a biochemical "clock" that appears to play a crucial role in the way information is sent from the surface of a cell to its nucleus. These messages can cause the cell to thrive or commit suicide, and manipulating them could lead to new treatments for cancer and other diseases, the researchers say.

The findings, based on lab experiments conducted at Cal Tech and computer models developed at Johns Hopkins, are reported in the Nov. 8 issue of the journal "Science."


Scientists have known that living cells send messages from their surfaces to their nuclei by setting off a chain of chemical reactions that pass the information along like signals traveling over a telephone wire. Such reaction chains are called signaling pathways. But while studying one such reaction chain called the NF-kappaB pathway within mouse cells, the university researchers learned that the signal transmission process is even more complicated.

"We found that if the pathway was activated for a short time, a single pulse of activity was delivered to the nucleus, like a single tick of a clock, activating a set of genes," said Andre Levchenko, assistant professor in the Department of Biomedical Engineering at Johns Hopkins. "But longer activation could produce more pulses and induce a larger gene set. We believe that the timing between pulses is critical. If too much or too little time elapsed, the genetic machinery would not respond properly."

Levchenko, a lead author on the "Science" paper, and his colleagues concluded that the signaling pathway inside a cell was serving as much more than a simple wire. "It was not just carrying the information, it was processing it," he said. "The pathway was operating like a clock with a pendulum, delivering the signal at particular intervals of time in a way that could resonate with the behavior of the genes in the nucleus."

When information moves through a cell pathway to genes in the nucleus, it prompts the genes to send out their own instructions, directing the cell to assemble proteins to carry out various tasks. By developing a better understanding of the way information travels along a pathway, Levchenko said, researchers may be able to create drugs that disrupt or change this line of communication, and in turn affect overall functioning within the cell. For example, a drug designed to shut down the NF-kappaB pathway might cause a cancer cell to commit suicide through a biological process called apoptosis. "We know that cancer cells use this pathway," he said. "If we can find a smart way to cut this ’wire,’ it will be much easier to kill the cancer cells."

Levchenko and his colleagues made their discovery by first developing a computer model showing how they believed the pathway operates. Then they verified their results by studying live cells in the lab. Finally, they used the validated model to guide further experiments. Although mouse cells called fibroblasts were used, Levchenko said the findings should also hold true for human fibroblasts and other cell types.

Because the computer model has been validated, it could be used to speed up the development of pharmaceuticals that might affect the cell pathway, said Levchenko, who is a part of a computational biology research team based at the Whitaker Biomedical Engineering Institute at Johns Hopkins. He said drug developers could use the computer model to quickly test how various compounds may affect the cell behavior before launching more time-consuming lab tests with live cells. "This has given us a very good tool to predict things that may happen when the pathway properties are altered, reducing the need to engage in exhaustive animal tests," Levchenko said.


The other lead author of the Science paper was Alexander Hoffman, who engaged in the research as a postdoctoral scholar at Cal Tech and now is an assistant professor of biology at the University of California, San Diego. The co-authors were Martin L. Scott, who conducted research at MIT and who now is employed by Biogen Inc.; and David Baltimore, president of Cal Tech.

Color Image of Andre Levchenko available; Contact Phil Sneiderman Related Links:

Andre Levchenko’s Web page: http://www.bme.jhu.edu/~alev
Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251


Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>