Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain gets the big picture

01.11.2002


When you look at a picture, your brain has to put together lines, patterns and shapes to make a meaningful scene. New research by neuroscientists at the University of California, Davis and the University of Minnesota shows that higher regions of the brain can quickly recognize patterns and shapes and tell lower areas of the brain to stop processing the information. The finding confirms predictions from computer models and helps explain how the human brain makes sense of what the eyes see.



Scott Murray, Bruno Olshausen and David Woods from UC Davis and the VA Medical Center in Martinez, with Daniel Kersten and Paul Schrater from the University of Minnesota, Twin Cities, used functional magnetic resonance imaging (fMRI) to see which parts of the brain were active as subjects looked at different patterns and shapes.

Current theories hold that a lower area of the brain called the primary visual cortex responds to simple features such as edges and lines and passes this information on to higher, pattern-recognizing parts of the brain.


When the researchers showed subjects random patterns of lines, the primary visual cortex lit up on the fMRI scan. When the same lines were organized into a shape, a higher part of the brain called the lateral occipital complex (LOC) was activated, but the primary visual cortex was less active. That shows that when the LOC recognizes a pattern in the information it gets from the primary visual cortex, it can send a message back down the pathway to tell the lower area of the brain to stop responding.

"Things in the environment are not random. The higher areas of the brain expect order and pick it out," Murray said. The brain should be better able to detect new or different items if it can pick out common patterns first, he said.


The research is published in the October 28 issue of Proceedings of the National Academy of Sciences of the USA.

Media contacts: Scott O. Murray, Center for Neuroscience, 530-757-8789, somurray@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://redwood.ucdavis.edu/scott/research/fmri/

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>