Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming has uneven effect on coastal animals

01.11.2002


Although it is expected that populations of many organisms will move away from the equator and toward the poles to stay cool during global warming, researchers have found that the intertidal zone does not exactly fit this pattern. A study published in this week’s Science Magazine indicates that there may be "hot spots" at northern shoreline sites within the next three to five years. This is partly due to the timing of the tides.

"Because they are assumed to live very close to their thermal tolerance limits, organisms inhabiting the rocky intertidal zone have emerged in recent years as potential harbingers of the effects of climate change on species distribution," explain the authors, three of whom are from the University of California, Santa Barbara.

Coauthor Carol Blanchette, a researcher with the Marine Science Institute at the University of California, Santa Barbara, says that neither air nor water temperatures alone are good proxies for body temperatures in intertidal organisms. Multiple climatic factors drive body temperature and the pattern of exposure to these conditions is influenced by shifts in the tidal cycle with latitude.



The researchers put temperature loggers, modified to thermally match living mussels, in mussel beds at eight sites spanning 14 degrees of latitude ranging from northern Washington to Point Conception, Calif. and measured temperatures over the course of a year.

They found that Lompoc Landing, Calif., one of the more southern sites, was thermally very similar to Tatoosh Island, Wash.––the northernmost site where instruments were deployed.

In several cases the animals in southern sites are submerged in the afternoon. "As a result, even if terrestrial climatic conditions become progressively hotter as one moves south along the West Coast, as they likely do, animals at southern sites may be afforded considerable protection by being submerged during the hottest parts of the day," explain the authors.

The article states that "an examination of tidal height predicts that maximum exposure at many northern Washington sites will occur in 2003. Indeed, large mussel mortality events occurred in the summer of 2002 in both Washington and Oregon. These results suggest that, all other factors being equal, the relative level of thermal stress observed between these sites will vary markedly over time."

Patricia M. Halpin and Gretchen E. Hofmann, both from UCSB, were also coauthors on the article. The first author is Brian Helmuth of the University of South Carolina. Christopher D. G. Harley and Michael O’Donnell, both of Stanford University were also coauthors.

The work was supported by an NSF grant and a grant from the National Geographic Society. Logistical support was provided by the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO).


Carol Blanchette can be reached at (805) 893-5144.
Patricia Halpin can be reached at (805) 893-6174.
Gretchen E. Hofmann can be reached at (805) 893-6175

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>