Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist helps identify neurons in worms that control link between stress, eating

31.10.2002


Scientists at UT Southwestern Medical Center at Dallas and the University of California, San Francisco have shown that feeding behavior in worms is controlled by neurons that detect adverse or stressful conditions.



The findings are published in the Oct. 31 issue of Nature.

The discovery of the gene that controls social feeding behavior in worms was made in 1998 by researchers at UCSF. The new findings build on the earlier research by identifying the nociceptive neurons – neurons that transmit pain signals - triggering group feeding.


"The gene that controls this behavior in worms is like the one that controls feeding in humans," said Dr. Leon Avery, associate professor of molecular biology at UT Southwestern and an author of the study. "The epidemic of obesity in America makes [the findings on neurons] potentially relevant to health."

Scientists have long known that soil worms, called Caenorhabditis elegans, have varying eating habits. The species of the worm commonly used in research labs tends to feed alone. In the wild, however, most of the C. elegans feed in groups.

"It’s like they’re having a party," Avery said. "Other worms pay no attention to each other when there’s food."

In higher species, factors like season, availability of food and natural enemies can regulate aggregation behavior, which in turn can affect biodiversity as well as community structure and dynamics. Although social scientists have made strides in understanding the significance group behaviors have had on ecological and evolutionary processes, little research has been done on the basic neural mechanisms underlying this behavior.

Avery and other researchers were able to show that whether the worms ate alone or in groups was dictated by the existence of the ADL and ASH nociceptive neurons. Worms without ASH and ADL eat alone.

C. elegans are studied because they have a genetic makeup similar to humans. Because their systems are very small (about 950 cells make up an entire worm), genes are easier to track and study. About 1 millimeter long, the worms grow, reproduce and age much like humans. Researchers who identified key genes in C. elegans involved in organ development and programmed cell death were awarded the Nobel Prize in physiology or medicine earlier this month.

Avery said the Nature study is the culmination of a decade-long research project. Some of the initial work was performed in 1990 by Dr. M. Wayne Davis, another of the study’s authors, when he was a summer undergraduate research fellow at UT Southwestern under the tutelage of Avery. Davis is currently a researcher at the University of Utah.


###
The work was supported by the Wellcome Trust, the Howard Hughes Medical Institute and the Medical Research Council of Great Britain.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then click on "Receive Our News" in the left navigation and follow the instructions.


Steve O’Brien | EurekAlert!
Further information:
http://www3.utsouthwestern.edu/
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>