Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists uncover secrets of feather formation

31.10.2002


’Jurassic Chicken’ project may help studies of human development and evolution of dinosaurs

Scientists from the Keck School of Medicine of the University of Southern California have, for the first time, shown experimentally the steps in the origin and development of feathers, using the techniques of molecular biology. Their findings will have implications for the study of the morphogenesis of various epithelial organs-from hairs to lung tissue to mammary glands-and is already shedding light on the controversy over the evolution of dinosaur scales into avian feathers.

A paper describing this work, "The Morphogenesis of Feathers", authored by principal investigator and Keck School pathology professor Cheng-Ming Chuong and his colleagues, was selected for advance online publication in the journal Nature and will be available as of October 30, 2002.



"The feather is one of the best research models you can find for understanding the basic molecular pathways used by all epithelial cells," says Chuong. "Scientists agree that whether you’re looking at a human mammary gland or a chicken feather, epithelial cells use the same underlying logic, the same grammar, to form an organ. But unlike a gland, a feather really lays everything right out there for you."

The question of what makes a feather a feather has become rather heated in the recent past, with the discovery in China in the 1990s of fossilized dinosaurs like the Sinorthosaurus (Chinese-bird-dinosaur), with branching skin appendages on its skin. "Some say these things are feathers, some say they’re protofeathers, others say they’re not feathers at all," Chuong explains. "Everybody wants to know which one is the real first feather."

And they want to know how it came to be, as well. Over the years, Chuong notes, paleontologists trying to trace the evolutionary connection between dinosaurs and birds have looked at the ways in which a reptilian scale might turn into an avian feather.

Most adult feathers have a backbone, or stem, called a rachis, off of which the feather’s barbs branch; each individual barb then branches again into the feather’s smallest unit, the barbule, which is made of a single row of epithelial cells. Downy feathers, like those on a chick, lack a rachis altogether and are made up of just barbs studded with barbules. The standing hypothesis among many paleontologists has long been that the scales on dinosaurs must have lengthened into rachides that then became notched to form barbs and barbules. But there has been no real molecular evidence to either back up or refute that argument. Until now.

In their Nature paper, Chuong and his colleagues have demonstrated just how barbs and rachides are formed in a modern chicken, and have at the same time demonstrated that the evolution from scale to feather most likely followed a path in which the barbs form first and fuse to form a rachis-rather than a rachis forming first, and then being sculpted into barbs and barbules. This interaction between evolutionary biology and developmental biology (dubbed Evo-Devo) is a relatively new marriage of two previously disparate fields.

To come to their conclusions, Mingke Yu, the postdoctoral fellow and first author on the paper, along with colleagues Ping Wu and Randall B. Widelitz in Chuong’s laboratory, developed a novel way to genetically manipulate different genes during feather formation. They plucked feathers from chickens, then prompted the chicken to regenerate those feathers under controlled conditions, raising and lowering the expression levels of the genes in question on an individual basis and observing the effects they had on the organization of epithelial cells into different feather forms.

Among others, three genes in particular-noggin, bone morphogenetic protein 4 (BMP4), and the whimsically named sonic hedgehog (Shh)-were found to result in new feathers that were rife with abnormal organization in their rachides and barbs. When Chuong’s team increased the expression of noggin, for instance, they found that the rachis began to split into several small, thin rachides, and the barbs increased in number. When they increased the expression of BMP4, with which noggin interacts antagonistically, they found that the feather’s rachis became gigantic and its barbs merged and were reduced in numbers. In this way, they were able to essentially manipulate the number and size of the feather’s barbs and rachides.

Finally, when they suppressed Shh, they found a residual webby membrane between the normally separated barbs. "The cells there were supposed to go through apoptosis, or cell death," says Chuong, "in order to create the space between the barbs. But when we took away the sonic hedgehog signal, cell death no longer occurred. It is a similar process to that which occurs in the web of duck feet."

What can these new findings on the morphogenesis of feathers tell us about their evolution? "These results suggest that the barbs form first and later fuse to form a rachis, much like downy feathers are formed before flight feathers when a chicken grows up. Under the general rule of ontogeny repeating phylogeny, downy feather made only of barbs probably appeared before the evolution of feathers with rachides and capable of flight," Chuong says. "However, pinning down the exact moment at which dinosaur scales become chicken feathers is non-realistic. Just like Rome, feathers are not made in one process. It took 50 million years for Nature to refine the process, to transform a scale into a flight machine. There were many, many intermediate stages.

"While Darwin’s theory has explained the ’why’ of evolution, much of the ’how’ remains to be learned," Chuong adds. "Evo-Devo research promises a new level of understanding."

These findings also have medical applications, notes Chuong. "With this study, we learned more about how nature guides epithelial stem cells to form different organs. For example, BMP, Shh and noggin are also used in different ways in making lungs, limbs and spinal cords. By analyzing these models, scientists may be able to fully understand nature’s ’grammar,’ and learn to use it in repairing or regenerating tissues and organs, which we call tissue engineering."


###
This research was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health, and from the National Science Foundation.

Mingke Yu, Ping Wu, Randall B. Widelitz and Cheng-Ming Chuong, The Morphogenesis of Feathers. Nature advance online publication, 30 October 2002 (doi:10.1038/nature01196).

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>