Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists uncover secrets of feather formation

31.10.2002


’Jurassic Chicken’ project may help studies of human development and evolution of dinosaurs

Scientists from the Keck School of Medicine of the University of Southern California have, for the first time, shown experimentally the steps in the origin and development of feathers, using the techniques of molecular biology. Their findings will have implications for the study of the morphogenesis of various epithelial organs-from hairs to lung tissue to mammary glands-and is already shedding light on the controversy over the evolution of dinosaur scales into avian feathers.

A paper describing this work, "The Morphogenesis of Feathers", authored by principal investigator and Keck School pathology professor Cheng-Ming Chuong and his colleagues, was selected for advance online publication in the journal Nature and will be available as of October 30, 2002.



"The feather is one of the best research models you can find for understanding the basic molecular pathways used by all epithelial cells," says Chuong. "Scientists agree that whether you’re looking at a human mammary gland or a chicken feather, epithelial cells use the same underlying logic, the same grammar, to form an organ. But unlike a gland, a feather really lays everything right out there for you."

The question of what makes a feather a feather has become rather heated in the recent past, with the discovery in China in the 1990s of fossilized dinosaurs like the Sinorthosaurus (Chinese-bird-dinosaur), with branching skin appendages on its skin. "Some say these things are feathers, some say they’re protofeathers, others say they’re not feathers at all," Chuong explains. "Everybody wants to know which one is the real first feather."

And they want to know how it came to be, as well. Over the years, Chuong notes, paleontologists trying to trace the evolutionary connection between dinosaurs and birds have looked at the ways in which a reptilian scale might turn into an avian feather.

Most adult feathers have a backbone, or stem, called a rachis, off of which the feather’s barbs branch; each individual barb then branches again into the feather’s smallest unit, the barbule, which is made of a single row of epithelial cells. Downy feathers, like those on a chick, lack a rachis altogether and are made up of just barbs studded with barbules. The standing hypothesis among many paleontologists has long been that the scales on dinosaurs must have lengthened into rachides that then became notched to form barbs and barbules. But there has been no real molecular evidence to either back up or refute that argument. Until now.

In their Nature paper, Chuong and his colleagues have demonstrated just how barbs and rachides are formed in a modern chicken, and have at the same time demonstrated that the evolution from scale to feather most likely followed a path in which the barbs form first and fuse to form a rachis-rather than a rachis forming first, and then being sculpted into barbs and barbules. This interaction between evolutionary biology and developmental biology (dubbed Evo-Devo) is a relatively new marriage of two previously disparate fields.

To come to their conclusions, Mingke Yu, the postdoctoral fellow and first author on the paper, along with colleagues Ping Wu and Randall B. Widelitz in Chuong’s laboratory, developed a novel way to genetically manipulate different genes during feather formation. They plucked feathers from chickens, then prompted the chicken to regenerate those feathers under controlled conditions, raising and lowering the expression levels of the genes in question on an individual basis and observing the effects they had on the organization of epithelial cells into different feather forms.

Among others, three genes in particular-noggin, bone morphogenetic protein 4 (BMP4), and the whimsically named sonic hedgehog (Shh)-were found to result in new feathers that were rife with abnormal organization in their rachides and barbs. When Chuong’s team increased the expression of noggin, for instance, they found that the rachis began to split into several small, thin rachides, and the barbs increased in number. When they increased the expression of BMP4, with which noggin interacts antagonistically, they found that the feather’s rachis became gigantic and its barbs merged and were reduced in numbers. In this way, they were able to essentially manipulate the number and size of the feather’s barbs and rachides.

Finally, when they suppressed Shh, they found a residual webby membrane between the normally separated barbs. "The cells there were supposed to go through apoptosis, or cell death," says Chuong, "in order to create the space between the barbs. But when we took away the sonic hedgehog signal, cell death no longer occurred. It is a similar process to that which occurs in the web of duck feet."

What can these new findings on the morphogenesis of feathers tell us about their evolution? "These results suggest that the barbs form first and later fuse to form a rachis, much like downy feathers are formed before flight feathers when a chicken grows up. Under the general rule of ontogeny repeating phylogeny, downy feather made only of barbs probably appeared before the evolution of feathers with rachides and capable of flight," Chuong says. "However, pinning down the exact moment at which dinosaur scales become chicken feathers is non-realistic. Just like Rome, feathers are not made in one process. It took 50 million years for Nature to refine the process, to transform a scale into a flight machine. There were many, many intermediate stages.

"While Darwin’s theory has explained the ’why’ of evolution, much of the ’how’ remains to be learned," Chuong adds. "Evo-Devo research promises a new level of understanding."

These findings also have medical applications, notes Chuong. "With this study, we learned more about how nature guides epithelial stem cells to form different organs. For example, BMP, Shh and noggin are also used in different ways in making lungs, limbs and spinal cords. By analyzing these models, scientists may be able to fully understand nature’s ’grammar,’ and learn to use it in repairing or regenerating tissues and organs, which we call tissue engineering."


###
This research was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health, and from the National Science Foundation.

Mingke Yu, Ping Wu, Randall B. Widelitz and Cheng-Ming Chuong, The Morphogenesis of Feathers. Nature advance online publication, 30 October 2002 (doi:10.1038/nature01196).

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>