Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming brain research with jellyfish genes and advances in microscopy

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

"This work represents a new approach to studying the biology of whole, living animals," says Jeff W. Lichtman, M.D., Ph.D., professor of anatomy and neurobiology. "I believe these methods will transform not only neurobiology, but also immunology and studies of organs such as the kidney, liver, and lung."

Lichtman presented the work at the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.



"The experiences we have in the world somehow shape our brains," says Lichtman. "How this information is encoded in our nervous systems is one of the deep, fundamental questions of neurobiology."

To help answer that question, Lichtman, together with Joshua R. Sanes, Ph.D., Alumni Endowed Professor of Neurobiology, and other colleagues at the School of Medicine, have developed strains of mice with nerve tracts stained by up to four different fluorescent jellyfish proteins, each of which glows with a different color when exposed to the correct energy of light. Using an advanced technology such as low-light-level digital imaging, confocal microscopy and two-photon microscopy, the investigators can observe over time nerve cells and the synapses that interconnect them within the brain.

Two-photon microscopy uses a powerful infrared laser that can selectively stimulate the fluorescent proteins within the nerve cells deep within the brain to glow. This approach permits imaging the brain without having to penetrate the skull. Computerized techniques then produce three-dimensional images of neural connections in the living animal, enabling the researchers to watch how patterns of connections between neurons change during learning and development.

The researchers’ studies are providing fascinating clues about how learning occurs in the brain. For example, it seems that nerve cells in the brain begin with many connections to other nerve cells. With time, many of these connections are eliminated shortly after birth.

"The brain begins with many diffuse and unspecialized sets of connections, and then sort of sculpts out subsets of those connections to serve particular functions," says Lichtman. "In essence, it seems that as we improve at some things, we lose our ability for other things."

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/lichtman.html

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>