Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study helps explain gene silencing in the developing embryo

29.10.2002


New research at the University of North Carolina sheds light on the process that silences a group of genes in the developing embryo.



Down regulation of gene expression or "gene silencing" is considered crucial in normal development. In the embryo, proteins expressed by different sets of genes help signal the pattern of development, including limb formation. However, when that work is completed, the genes responsible must be turned off, explains Dr. Yi Zhang, assistant professor of biochemistry and biophysics at UNC-Chapel Hill School of Medicine and a member of the Lineberger Comprehensive Cancer Center.

"During the early embryonic development, a group of genes called Hox genes needs to be expressed. After they’ve been expressed and have set the body pattern, they have to be silenced permanently during the life of the organism," Zhang said.


According to Zhang, another gene group known as the Polycomb group has been intensely studied for its role in silencing Hox in organisms ranging from flies to mammals, including humans. "We know that if something is wrong with the Polycomb group, if these genes are mutated and cannot silence Hox, then development becomes abnormal."

Writing in the Nov 1 issue of Science, Zhang and co-authors from UNC; Southern Methodist University, Dallas, Texas; and Memorial Sloan Kettering Cancer Center, New York, NY, report the purification and characterization of a Polycomb group protein complex. Importantly, their research has established a link between Polycomb gene silencing and histone protein methylation, the addition of a methyl group to lysine, one of the amino acids that comprise the tail region of histone molecules.

Four core histone proteins are highly conserved in eukaryotic organisms, those having nucleated cells. These histones are involved in packaging our genetic information, DNA. Each contain a globular domain and an amino terminal "tail." Of interest to Zhang and others at UNC and elsewhere is that histones, specifically processes that modify them including methylation, are thought to play a major role in gene expression and cell division.

"Basically, we found that the Polycomb proteins function through methylating a particular lysine residue, lysine 27, on histone 3," Zhang said. When enzyme activity causing methylation of this site is blocked, Hox gene silencing does not occur.

Given those findings, Zhang and his study team could explain the permanence of Hox gene silencing. "Histone methylation cannot be reversed. It becomes permanent, a long-term genetic marker. Thus far, no ’histone demethylase’ has been discovered."

It may well be that methylation and other modifications of histone proteins are part of an emerging "histone code" of modifications that ultimately regulate gene expression. This code was postulated three years ago by Drs. David Allis and Brian Strahl at the University of Virginia. (Strahl is now at UNC.) Currently under investigation by Zhang and colleagues in several departments at UNC, a histone code would be in addition to the now familiar genetic code of repeating As, Cs, Gs, and Ts of DNA nucleotide sequences.

Through this histone code, differentially modified histone proteins could organize the genome into stretches of active and silent regions. Moreover, these regions would be inherited during cell division.

The study was supported by grants from the National Institute of General Medicine at NIH and the American Cancer Society.


note: contact Zhang at 919-843-8225 or yi_zhang@med.unc.edu
School of Medicine contact, Les Lang, 919-843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>