Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution upset: Oxygen-making microbes came last, not first

25.10.2002


Get ready to rewrite those biology textbooks – again. Although the "lowly" blue-green algae, or Cyanobacteria, have long been credited as one of Earth’s earliest life forms and the source of the oxygen in the early Earth’s atmosphere, they might be neither.

By creating a new genetic family tree of the world’s most primitive bacteria and comparing it to the geochemistry of ancient iron and sulfur deposits, Carrine Blank of Washington University has found evidence that instead of Cyanobacteria being very ancient, they may have appeared much later, perhaps as much as a billion years later, than previously assumed. Blank will present the results of her research at the annual meeting of the Geological Society of America in Denver on Tuesday, Oct. 29.

"What paleontologists and geologists have had to do is reconstruct evolutionary events because biologists haven’t had a very good evolutionary tree of bacteria," says Blank. To get a better family tree, Blank took advantage of growing genome archives and studied 38 genes in the whole gene sequences of 53 species of extant bacteria, including Cyanobacteria. By mapping out the rates of change in the slowest-changing genes, Blank was able to generate a bacterial evolutionary history that shows cyanobacteria branching off last.



If correct, Blank’s tree essentially flip-flops the traditional order in which bacteria appeared on the scene.

Traditionally, it has been thought that Cyanobacteria came on stage very early in Earth’s history, perhaps at least 3.5 billion years ago. They produced the first abundant oxygen molecules. All that oxygen bound to the abundant free iron in the oceans and rained to the seafloor – creating the economically important banded iron formations. The advent of atmospheric oxygen also caused sulfide minerals on land to break down into sulfates and wash into the oceans – where sulfur-loving bacteria gobbled them up. The earliest geological evidence for sulfur bacteria is changes in sulfur isotopes – indicating organisms are preferentially using isotopes of the element – that began about 2.4 billion years ago. This was followed by a sudden rise in oxygen in the atmosphere at about 2.2 or 2.3 billion years ago.

"The (traditional) model was that the cyanobacteria were present all the time," says Blank. Reasonable as all this sounds, it doesn’t match the genetic evolutionary tree, she says.

In Blank’s version of the story, the sulfur-loving bacteria came on the scene at about 2.4 billion years ago, and the Cyanobacteria came along at least 100 million years later, she says. Because banded iron formations were formed much earlier than these dates, Cyanobacteria are not likely to have led to their creation, she explains.

Blank’s model could explain the puzzling lack of actual cyanobacteria fossils in the earliest days of the banded iron formations. It could also resolve an apparent contradiction regarding the biochemistry of Cyanobacteria, says Blank. The contradiction is that cyanobacteria have a surprisingly advanced biochemistry that was the product of a long evolutionary history. In other words, cyanobacteria must have evolved from more primitive photosynthetic bacteria.

If Blank is correct, her revised evolutionary history of the bacteria raises a difficult question: If cyanobacteria came later, where did the Earth’s earliest oxidants come from which produced banded iron formations? There are many competing theories on this matter, Blank says. Among them are hypotheses that call on inorganic reactions in the oceans and the air to release limited amounts of oxidants. There is even the possibility that there was also an early and so-far undiscovered iron oxidizing microbe that may have produced banded iron formations as a result of their metabolism, Blank says.

Blank’s cyanobacteria research was conducted as part of her recent doctoral thesis at the University of California at Berkeley. Her bacterial phylogeny research is currently under review for publication in the journal Molecular Phylogenetics and Evolution. Blank is an Assistant Professor of Molecular Geobiology in the Department of Earth and Planetary Sciences at Washington University in St. Louis.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.

The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

Post-meeting contact information:

Carrine Blank
Earth and Planetary Sciences
Washington University
blank@levee.wustl.edu
314-935-4456

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056


Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

More articles from Life Sciences:

nachricht From a plant sugar to toxic hydrogen sulfide
19.12.2018 | Universität Konstanz

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>