Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane bacteria possess pressure valve

24.10.2002


Microbiologists from the University of Nijmegen have discovered that a methane-forming archaeabacterium sometimes deliberately allows hydrogen ions to leak out of its cell. At high hydrogen concentrations in particular, the cell membrane works as a sort of pressure valve. The waste of energy seems to be of vital importance for the microorganism.



The researchers examined how a bacterium adapts to changing circumstances. The study focussed on the behaviour of the relatively simple methane producing microorganism Methanothermobacter thermoautotrophicus. In order to grow, this so-called archaeabacterium obtains hydrogen from the environment. However, the quantity of hydrogen, that is the food available, can vary considerably. The methane bacterium seems to use this to its advantage.

At high hydrogen concentrations, thus an excess of food, the bacterium grows as quickly as possible. In so doing the organism loses energy but at this point in time plenty of energy is available anyway. Furthermore, this wastage is a bonus as it results in the difference between the hydrogen ion concentrations inside and outside of the cell becoming smaller. Under these circumstances this is desirable, as otherwise a range of processes in the cell might cease to continue.


The observations confirm the prediction made in a mathematical model. That model, constructed by the Nijmegen research group, not only predicted that the methane bacteria would waste energy, but also how that would occur. At high hydrogen concentrations the microorganism would allow hydrogen ions to leak through the cell membrane. In this case the cell membrane would act as a sort of excess pressure valve.

The model summarises about 2000 different reactions in a small number of biochemical and thermodynamic equations. The researchers have now subjected the model and the assumptions on which it is based to extensive experimental testing. As had been assumed, the important reactions in the methane-forming process proceeded without energy loss.

Despite its relative simplicity, the model seems to accurately predict the behaviour of the microorganism. This implies that apparently complicated processes can in fact be determined by simple thermodynamic principles.

The researchers expect that this is not only the case for methane-forming bacteria but might also apply to other forms of life. This means that the research is not only interesting for microbiologists, but also for chemists, physicians, botanists and zoologists.



Michel Philippens | alfa

More articles from Life Sciences:

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>