Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI technique lets researchers directly compare similarities, differences between monkey and human brain

22.10.2002


James Todd


Researchers have developed a new way to use a decade-old imaging method to directly compare the brains of monkeys with those of humans. Their report appeared in the journal Science.

The method uses functional Magnetic Resonance Imaging (fMRI) – a technique that measures blood volume and flow and blood-oxygen levels in the brain. It also provides an indirect measure of neuronal activity in different regions of the brain.

Neurons need oxygen and glucose to work. Blood carries both substances, and both can cross the blood-brain barrier. When a particular region of the brain is activated, the blood flow to that area temporarily increases in order to supply the neurons with fresh oxygen and glucose.



“What we’re doing is an indirect measurement of the human brain’s electrical activity,” said Wim Vanduffel, the report’s lead author and an instructor at the Athinoula A. Martinos Center for Biomedical Imaging in Charlestown, Mass.

“It’s the best way at present for investigating patterns of neural activity in humans,” he said.

The researchers used the same fMRI technique on humans and on monkeys to compare activity in an area of the brain called the visual cortex, the region that processes vision and motion. While each species shares similar traits in the visual cortex, the researchers did find distinct differences between the species in two key areas.

“Implicit in the neuroscience community was that the monkey cortex is a good model for the human cortex,” said James Todd, a study co-author and a professor of psychology at Ohio State University. “Scientists didn’t have any choice but to make that assumption, as the monkey brain was the only model we had to work with.”

What set the fMRI technique used in this study apart from past fMRI experiments on monkeys is that the monkeys remained conscious during the experiments.

“Until this point, anybody who has used fMRI on monkeys did so while the animals were sedated,” Todd said. “That presents a real problem since sedation may alter the patterns of neural activity that occur when monkeys are awake.”

Eleven human subjects each participated in 14 separate fMRI scan sessions, and three juvenile macaques participated in at least eight sessions. While each session produced data, some of the sessions produced weak signals. Therefore, the researchers averaged together the sessions in order to obtain reliable results.

The experiments were conducted in a laboratory run by Guy Orban, head of the division of neurophysiolgy at Katholieke Universiteit Leuven in Belgium, where Wim Vanduffel also holds a postdoctoral position. Todd was responsible for designing the images viewed by all of the subjects.

For each session, a human subject lay on his back inside the fMRI and watched as nine randomly connected lines began to rotate on a monitor inside the machine. This procedure could not be used on the monkeys, however, because monkeys don’t like lying on their backs. Instead, the researchers used juvenile monkeys that could be seated within the fMRI apparatus.

The researchers looked for areas of the visual cortex that were activated while the subjects watched rotating 3-D images. Each portion of a subject’s visual cortex was scanned during each session in the fMRI. In order to better see the areas of activity in the monkey brain, the macaques were injected with a solution that enhanced the contrast shown in the final scans.

“For unknown reasons, the fMRI signals from the monkeys were weaker than those from the humans,” Orban said. “Since the monkey brain is smaller, we needed to use a contrasting agent to increase the fMRI’s ability to pick up a signal.”

While a regular MRI measures tissue density and structure, fMRI measures the flow, volume and oxygenation of blood in tissue. In the current study, this technique was used to investigate regions of the brain that were activated when the subjects looked at the moving 3-D images.

“The advantage of functional MRI is that scientists can see which regions of the brain are active,” Orban said.

The results showed pronounced differences between the two species: in an area of the human visual cortex called V3A – an area thought to be responsible for a variety of visual functions, such as motion processing and stereoscopic depth – and also in the intraparietal cortex. The researchers noted that, in humans, four distinct areas of the intraparietal cortex were involved in processing the rotating 3-D images. There is no clear counterpart to this region in monkeys.

“The results suggest that, as humans evolved, some portions of their brains adapted to produce specific abilities, such as controlling fine motor skills,” Orban said.

The results don’t mean that monkeys don’t have 3-D visual capabilities. The findings do show that researchers now have a technique enabling them to make reliable comparisons between a monkey brain and a human brain.

“This study provides the first evidence of a functional difference between the human and the monkey brain,” Todd said. “The results show that, in at least one important aspect, the brains function quite differently.”

“We were in a paradoxical situation before we had these results,” Orban said. “On one hand, it’s obvious that humans and monkeys are different.

“On the other hand, when we use the physiology of the monkey brain as a model to explain what we see in a human functional MRI scan, we had assumed that the activity was occurring in the same region in each brain. We had to make an assumption, which we knew would be wrong from time to time. We just didn’t know when that assumption would be wrong.”

“Now we have a way to verify when the monkey model does not apply and when it really can apply,” Orban said. “And we can be much more precise in extrapolating findings from monkeys to humans.”

Support for this research came from the Inter-University Attraction Poles (a Belgian research foundation); GOA (a regional research support foundation in Belgium); the Fund for Scientific Research - Flanders (FWO-Flanders); and the Queen Elisabeth Medical Foundation.

Todd, Orban and Vanduffel conducted the study with Denis Fize, Hendrik Peuskens, Katrien Denys and Stefan Sunaert, all of Katholieke Universiteit Leuven.


Contact: James Todd, 614-292-8661; Todd.44@osu.edu
Guy Orban, 011 +32 16 345744; Guy.Orban@Med.Kuleuven.Ac.Be
Wim Vanduffel, 617-726-0318; wim@nmr.mgh.harvard.edu

Written by Holly Wagner, 614-292-8310; Wagner.235@osu.edu

James Todd | EurekAlert!
Further information:
http://www.fmrib.ox.ac.uk/fmri_intro/
http://www.nmr.mgh.harvard.edu/index.html
http://www.cog.ohio-state.edu/people/cfaculty/todd.html

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>