Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RRF Recycles Form, Not Exact Function

10.10.2002


Ribosome Recycling Factor Mimics Shape, But Not The Functions of Transfer RNA


RRF Protein Offers Potential Target for New Antibiotics


The fact that ribosome recycling factor (RRF) looks a lot like transfer RNA (tRNA) has not been lost on scientists. After all, both molecules are an important part of a bacteria’s ability to create new proteins. Researchers at the University of Pennsylvania School of Medicine and the University of Southern California, Santa Cruz, however, have found that this case of molecular mimicry has more to do with the shape of the molecules and not necessarily the job they perform. Their structural analysis of the RRF ribosome complex, presented in the current issue of the journal Cell, shows that RRF does not bind to the ribosome in the same location as tRNA.

"It is said that form follows function, but we see here that is not always true," said Akira Kaji, PhD, from Penn’s Department of Microbiology. "The L-shaped structure of both RRF and tRNA may have more to do with the spatial constraints of maneuvering within the folds of the ribosome than their actual tasks."



The actual task of the ribosome recycling factor has been something of a mystery for researchers. Until recently, science was unaware of its role in the process of creating proteins - and its potential as a target for new antibiotics.

Protein manufacture is a fundamental process of life that has been understood better in concept than in mechanics. While the DNA may encode the blueprints used to create proteins, it is the ribosome - an organelle within the cell - that actually builds a new protein.

There are three steps that are generally considered part of the scientific dogma surrounding the creation of new proteins: Initiation (the start of building a protein from messenger RNA that has been transcribed from DNA); Elongation (adding new amino acids to chain that becomes the protein via tRNA); and Termination (capping the amino acid chain off, so that it can be folded into a protein).

"There is one more crucial step that we had missed for a long time: recycling," said Kaji. It is the step where the machinery of the protein synthesis is "recycled" so that they can be used for the next round of protein synthesis. This step does not happen by magic, and we have to ask - How do you disassemble the complex of the protein synthesis machinery so that they can be used again for the next round of translation?

According to Kaji and his colleagues, RRF binds to different locations within the ribosomal complex at different times. It seems that, if the ribosome is the protein factory, the RRF is the foreman, moving from location to location to ’supervise’ the end of the assembly line. When the new protein is completed, RRF works in conjunction with other proteins to disassemble the ribosomal complex so that the components of the machinery are ready for the next round of protein creation.

Kaji believes that, since RRF plays the key role only in bacteria and mitochondria, the bacterial protein also provides an interesting target for new types of anti-bacterial agents. His research has already shown in the laboratory that bacteria lacking RRF cannot exist because of their inability to create new proteins.

"As bacteria mutate to become resistant to antibiotics, we must keep targeting parts of bacteria that are integral for functioning so that bacteria can not out-evolve antibiotics," said Kaji. "We are considering RRF as the target of a new type of antibiotic, an inhibitor of RRF that we can easily alter as bacteria become resistant."

Other scientists contributing to the research presented in Cell include Michael C. Kiel of Penn and Laura Lancaster and Harry F. Noller of the University of California at Santa Cruz.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>