Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of potential bioremediation agent sequenced

08.10.2002


Shewanella bacterium can remove toxic metals from environment



Rockville, MD. – Scientists at The Institute for Genomic Research (TIGR) and collaborators elsewhere have deciphered the genome of a metal ion-reducing bacterium, Shewanella oneidensis, that has great potential as a bioremediation agent to remove toxic metals from the environment.

The genome sequence sheds new light on the biochemical pathways by which the bacterium "reduces" and precipitates chromium, uranium and other toxic metals. The research offers what scientists call "a starting point" for defining the organism’s electron transport systems and metal-ion reducing capabilities.


In the course of the sequencing project, scientists also discovered a new bacterial phage (a virus that infects bacteria) that may provide a wedge for possible genetic manipulation of Shewanella to target it for specific bioremediation projects.

"This is a very important model organism for bioremediation research because of its unusual capacities to remove environmental pollutants under diverse conditions," said John F. Heidelberg, a TIGR assistant investigator. "Shewanella is the first microbe we have sequenced that can function for metal bioremediation and also survive in both aerobic and oxygen-free environments."

Heidelberg is the first author of the S. oneidensis genome paper, which was posted online this week by Nature Biotechnology and will appear in the journal’s November issue. In addition to fellow scientists at TIGR, Heidelberg’s collaborators included Kenneth H. Nealson of the University of Southern California; Eric J. Gaidos of the University of Hawaii; Terry Meyer of the University of Arizona; Alexandre Tsapin of the Jet Propulsion Laboratory; and James Scott of the Carnegie Institution of Washington.

The genome project --supported by the U.S. Department of Energy’s Office of Biological and Environmental Research through its Natural and Accelerated Bioremediation Research and Microbial Genome programs -- is expected to provide a boost for a wide-ranging research effort to develop Shewanella’s potential for bioremediation.

Jim K. Frederickson, who heads the Shewanella Foundation – a consortium of researchers that is part of the Energy Department’s Genomes to Life program – says the whole genome sequence "provides an essential foundation for the systems-level analysis" that the Federation has started. "It is enabling scientists to make global gene expression and proteome measurements that would otherwise be difficult or impossible to understand how this versatile bacterium responds to the environment."

S. oneidensis is a rod-shaped bacterium that is found in the sediments of lakes and rivers in many parts of the world. While it is a relatively common microbe, it has uncommon attributes. Those include its diverse capabilities for "respiration" – that is, the use of its complex electron-transport systems to reduce ions of metals such as chromium and uranium – thereby allowing bioremediation efforts that would remove those and other pollutants that are dissolved in water.

Chromium is a toxic metal, some forms of which have been related to cancer and other ailments, including severe digestive disorders. Groundwater pollution involving hexavalent chromium near Barstow, California, was the focus of a major environmental case in the early 1990s – a case that later was the basis for the film, "Erin Brockovitch." Uranium is a radioactive element that is also harmful to humans who are exposed to it.

TIGR’s analysis of S. oneidensis found that its genome sequence contains nearly 5 million base pairs, with a large circular chromosome with 4,758 predicted genes and a smaller (plasmid) circle of DNA with 173 predicted genes. Researchers found that the genome has an unusually high number of cytochromes, which are enzymes associated with electron transport – the key to the microbe’s potential for bioremediation projects.

In order to maximine the bioremediation potential of S. oneidensis, some researchers say, the microbe might need to be genetically altered. Providing a potential tool to do that, the genome analysis discovered a lambda-like phage that scientists say "may provide an avenue for genetic manipulation of this group of microbes and allow the design of strains for specific bioremediation purposes."

Claire M. Fraser, president and director of TIGR, was the senior author of the S. oneidensis genome paper. She said the sequencing project represents part of an ambitious TIGR research program to sequence the genomes of a wide range of environmental microbes. "We expect this genome sequence to lay the essential groundwork for future research into Shewanella’s great potential for bioremediation," Fraser said.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>