Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice bioengineers develop method to grow 3-D bone matrix

04.10.2002


Researchers use flowing fluids to create mechanical stress needed for bone formation


Tissue engineering researchers in Rice’s J.W. Cox Laboratory for Biomedical Engineering have developed a new technique that allows bone-forming cells to build a porous, 3-D bony matrix that’s structurally similar to natural bone. This photograph from an electron microscope shows a pore that has formed in a 3-D bony matrix. Bone-forming cells are clearly visible lining the walls.



A new study by Rice University researchers indicates that bioengineers growing bone in the laboratory may be able to create the mechanical stimulation needed to grow bone outside the body.

One of the greatest challenges tissue engineers face in growing bone in the laboratory is recreating the conditions that occur inside the body. The recipe for growing healthy bones includes not only a precise biological mix -- bone cells called "osteoblasts" and several growth factors that osteoblasts use to build the mineralized matrix of bones -- but also mechanical stimulation. Astronauts whose bones become brittle after months in orbit are a testament to the importance that mechanical stress plays in bone growth. In orbit, their skeletons aren’t subject to the everyday stresses of gravity.


Tissue engineers at Rice placed bone marrow-derived osteoblasts from rats into centimeter-wide plexiglass chambers containing a thin stack of titanium fiber mesh. The samples were covered with a liquid growth medium -- a bath of chemicals that promotes bone growth -- and sealed in an incubator. After letting the cultures sit overnight -- to give the cells time to attach themselves to the mesh -- engineers pumped growth medium through the cultures for 16 days. Bone cultures were subjected to a range of three different flow rates to provide mechanical stimulation, and another set of cultures were grown in a motionless bath.

Results of the research appear in the current issue of the Proceedings of the National Academy of Sciences USA.

"Researchers have used fluid flow to stimulate bone growth before, but no one has looked at its effect on three-dimensional cultures that have been subjected to continuous stimulation for several days," said Tony Mikos, the John W. Cox Professor of Bioengineering. "We found that even the lowest flow rate produced a significant increase in the formation of mineralized bone. Moreover, the mineralized bone that formed in samples subjected to flow was thick and well-developed -- similar to what we find in natural bone --while the bone matrix formed by the static samples was thin and brittle."

Mikos said more studies are needed to determine the exact flow rate needed to produce the optimal amount of bone matrix with the optimal three-dimensional structure. For those who have lost a segment of bone to cancer or injury, the technology isn’t expected to result in clinical treatment options for several years. Ultimately, however, artificial bone could be substituted for donor tissue or surgical implants made of synthetic materials.



The research was sponsored by the National Institutes of Health and NASA.

The article, titled "Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner," by G.N. Bancroft, V.I. Sikavitsas, J. van den Dolder, T.L. Sheffield, C.G. Ambrose, J.A. Jansen, and A.G. Mikos, appears in the Oct. 1 issue of Proceedings of the National Academy of Sciences

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>