Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene found that helps nerve cells survive by preventing cell suicide

26.09.2002


Finding may lead to new treatments for neurologic disease and nerve injury



Why do some nerve cells survive and regrow after injury while others shrink away and die? A new discovery by researchers at Massachusetts General Hospital (MGH) shows that the expression of a particular gene may be responsible for protecting neurons from death. The results, published in the September 26 issue of Neuron, could lead the way for new treatment strategies for a variety of neurological diseases.

"Turning on the gene named Hsp27 could potentially rescue nerve cells in patients with neurodegenerative conditions such as Lou Gehrig’s disease," says principal investigator Clifford Woolf, MD, PhD, of the Neural Plasticity Research Group in the Department of Anesthesia and Critical Care at MGH.


Woolf and his colleagues found that young sensory and motor nerve cells die after injury because the heat shock protein 27 gene (Hsp27) is not turned on in these cells. In adult cells however, the gene is expressed. The resulting protein that is produced protects these mature nerve cells from death following an injury.

"As part of normal development, many more neurons are made than are needed," says Woolf, who also is Richard J. Kitz Professor of Anesthesia Research at Harvard Medical School. "So some must be pruned away by essentially committing cell suicide, a phenomenon known as programmed cell death. It seems that Hsp27 is turned off to allow for this normal developmental process."

Woolf explains that once an individual reaches adulthood, nerve cells in the body are permanent and irreplaceable. "That’s why it’s important to have a repair mechanism for older neurons," he says. The protein made by the Hsp27 gene blocks cell suicide from taking place following injury, rescuing injured cells. For example, cells expressing the Hsp27 protein acquire resistance to excessive heat, chemical stress, and toxins. Hsp27 directly inhibits the cellular proteins that trigger programmed cell death.

In laboratory dishes and in rat models, Woolf and his team showed that, if the Hsp27 gene is delivered to young nerve cells using gene therapy with viral vectors, the cells are able to survive injury just as well as older nerve cells. Equally, if the gene is switched off in adults, those cells will die. "Hopefully, therapy that prevents cell death by delivering genes like Hsp27 will someday find its way into the clinic," says Woolf. "Patients with Lou Gehrig’s disease, for example, suffer a progressive death of their motor neurons leading to paralysis. If Hsp27 were able to prevent the death of the neurons in these patients, it would offer the possibility of new therapy, something we plan to test"

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>