Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene found that helps nerve cells survive by preventing cell suicide

26.09.2002


Finding may lead to new treatments for neurologic disease and nerve injury



Why do some nerve cells survive and regrow after injury while others shrink away and die? A new discovery by researchers at Massachusetts General Hospital (MGH) shows that the expression of a particular gene may be responsible for protecting neurons from death. The results, published in the September 26 issue of Neuron, could lead the way for new treatment strategies for a variety of neurological diseases.

"Turning on the gene named Hsp27 could potentially rescue nerve cells in patients with neurodegenerative conditions such as Lou Gehrig’s disease," says principal investigator Clifford Woolf, MD, PhD, of the Neural Plasticity Research Group in the Department of Anesthesia and Critical Care at MGH.


Woolf and his colleagues found that young sensory and motor nerve cells die after injury because the heat shock protein 27 gene (Hsp27) is not turned on in these cells. In adult cells however, the gene is expressed. The resulting protein that is produced protects these mature nerve cells from death following an injury.

"As part of normal development, many more neurons are made than are needed," says Woolf, who also is Richard J. Kitz Professor of Anesthesia Research at Harvard Medical School. "So some must be pruned away by essentially committing cell suicide, a phenomenon known as programmed cell death. It seems that Hsp27 is turned off to allow for this normal developmental process."

Woolf explains that once an individual reaches adulthood, nerve cells in the body are permanent and irreplaceable. "That’s why it’s important to have a repair mechanism for older neurons," he says. The protein made by the Hsp27 gene blocks cell suicide from taking place following injury, rescuing injured cells. For example, cells expressing the Hsp27 protein acquire resistance to excessive heat, chemical stress, and toxins. Hsp27 directly inhibits the cellular proteins that trigger programmed cell death.

In laboratory dishes and in rat models, Woolf and his team showed that, if the Hsp27 gene is delivered to young nerve cells using gene therapy with viral vectors, the cells are able to survive injury just as well as older nerve cells. Equally, if the gene is switched off in adults, those cells will die. "Hopefully, therapy that prevents cell death by delivering genes like Hsp27 will someday find its way into the clinic," says Woolf. "Patients with Lou Gehrig’s disease, for example, suffer a progressive death of their motor neurons leading to paralysis. If Hsp27 were able to prevent the death of the neurons in these patients, it would offer the possibility of new therapy, something we plan to test"

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>