Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly revealed viral structure suggests a continuum in the evolution of viruses

26.09.2002


An international team of scientists led by researchers at The Wistar Institute has combined two different imaging techniques to uncover the molecular-level framework of a common bacteriophage, a virus that infects bacteria. The results, reported in the October issue of Nature Structural Biology, suggest that viruses developed a continuum of progressively more complex architectural strategies to cope with their increasing size as they evolved. An image from the study is featured on the journal’s cover.



The new findings may open a novel approach to developing therapies for certain difficult-to-treat infections. The bacteriophage studied, called PRD1, infects antibiotic-resistant strains of E. coli bacteria, including strains responsible for tens of thousands of cases of food poisoning in the United States each year. The intimate knowledge of PRD1’s structure provided by the current study might help scientists develop a treatment for E. coli infections involving PRD1.

The structural details show that the bacteriophage has similarities to viruses smaller than itself, simple plant and animal viruses whose outer coats are formed from proteins held together by linked "arms." In addition, however, it also uses small "glue" proteins to cement larger proteins together. This feature makes it more like the human adenoviruses, larger and more complex viruses that infect the respiratory tract and cause other diseases. Taken together, these features place the bacteriophage at an intermediate point on the viral evolutionary tree and help illuminate the overall evolutionary path taken by families of viruses.


The new images show not only the outer coat of the bacteriophage, but also reveal details of its inner membrane, a poorly-understood fatty double layer beneath the coat that forms a protective barrier around the genetic material, or DNA.

"We have been intrigued by the parallels between PRD1 and adenovirus since we discovered striking similarities in their overall structure in earlier studies," says structural biologist Roger M. Burnett, Ph.D., a professor at The Wistar Institute and senior author on the Nature Structural Biology study. "Our results reveal that PRD1 also has similarities to simpler viruses and reinforce the idea that there is a continuum of viral architectures running through viruses that infect such different hosts as bacteria, plants, and animals, including humans. An appreciation of these parallels is important, as findings in one viral system may provide valuable insights into another. We have also learned more about membranes, which are very hard to study with conventional techniques, and see now how they can be involved in packaging viral DNA."

The two imaging techniques used by the researchers to dissect the structure of PRD1 are electron microscopy and X-ray crystallography. Computer modeling was used to combine images of an entire virus particle provided by the relatively low-resolution technique of electron microscopy with the high-resolution molecular structure of the coat protein obtained through X-ray crystallography. The resultant "quasi-atomic" structure of the proteins forming the outer envelope of the virus was then stripped away by a kind of graphical "surgery" to reveal details of the other molecules forming the viral interior.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>