Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA separation by entropic force offers better resolution

24.09.2002


Scanning electron micrograph of a cross section of the finished device. An array of densely spaced nanopillars constitutes the entropically unfavorable region. The pillar spacing was 135 nm and their width approximately 80 nm. Copyright © Cornell


Fluorescing DNA molecules show the separation of two different lengths of DNA. In the first image, DNA molecules pulled by a weak electric field gather at the edge of a sieve made of tiny pillars. After a stronger field pulse of two seconds, the shorter molecules were fully inserted, while the longer molecules remained partially in the open, entropically favorable region. When the field was removed, the longer molecules extracted themselves from the pillar region, as shown at right. Copyright © Cornell University


Cornell University researchers have demonstrated a novel method of separating DNA molecules by length. The technique might eventually be used to create chips or other microscopic devices to automate and speed up gene sequencing and DNA fingerprinting.

The method, which uses a previously discovered entropic recoil force, has better resolution -- that is, better ability to distinguish different lengths -- than others tried so far, the researchers say. They separated DNA strands of two different lengths, using their own nanofabricated device, and demonstrated that modifications would make it possible to separate strands of many different lengths.

A description of the experiment is scheduled to be published in the Oct. 1, 2002, issue of the journal Analytical Chemistry by graduate student Mario Cabodi, postdoctoral researcher Stephen Turner and Harold Craighead, the C.W. Lake Jr. Professor of Productivity.



The traditional method of separating DNA is gel electrophoresis, in which a strand is cut into many pieces and passed through a porous gel, where shorter lengths will move faster and farther than longer ones. From the distribution of the fragments, information about the genetic content can be determined. Researchers at Cornell and elsewhere have been experimenting with a variety of devices that replace the porous gel with microscopic sieves made by the same techniques used to manufacture electronic circuits.

Previously, Turner, Cabodi and Craighead studied the physics governing the movement of molecules through these sieves. Ordinarily, a long chain DNA molecule in liquid will clump into a roughly spherical shape, and to move through a sieve it must uncoil and slide in lengthwise. The researchers found that this movement involves an entropic force which causes DNA molecules that are only partially within a sieve to withdraw when the force pulling them in -- an electric field -- is removed. The effect is similar to a slippery chain falling from a table. If the chain is either entirely on the table or entirely on the floor, it will not move, but if part of it is hanging over the edge of the table it will eventually all spill onto the floor. In the case of DNA molecules in liquid, the effect results from the motion of segments in the chain molecule as they interact with the beginning of the barrier. The force is called "entropic" because the molecule moves out of the restricted space of the sieve into an open area where it can be more disordered.

In the latest experiment, the researchers used the Cornell Nanofabrication Facility (CNF) to make a sieve consisting of a forest of tiny pillars 80 nanometers wide, spaced about 135 nanometers apart, just large enough for a DNA molecule to pass through lengthwise. (A nanometer is a billionth of a meter, approximately three times the diameter of a silicon atom.) The researchers inserted a mix of DNA strands of two different lengths in a space next to the pillars and applied an electric field in a short pulse. The length of the pulse was adjusted so that shorter molecules were able to move completely into the pillar region, while longer ones could move only partway in. When the field was turned off, the longer strands recoiled, while the shorter ones, completely inside the pillar region, did not.

DNA molecules are too small to be observed directly, but for the experiment they were stained with a fluorescent dye, and the light given off was visible under a conventional microscope.

In further tests, the researchers showed that by applying a series of pulses of different durations the method could be used to separate strands of many different lengths. Another approach to separating strands of many lengths, they said in their paper, might be a "cascade" of similar separation devices. These methods would also improve the resolution, they said. They predicted that such a device could separate DNA molecules "in a particularly challenging length range with higher resolution than any other known method."

The principle of entropic recoil, they said, also could be applied by using various types of porous membranes and ceramic filters, as well as nanofabricated sieves. The technique could also be applied to proteins and other polymers, they added.

The paper in Analytical Chemistry is titled "Entropic Recoil Separation of Long DNA Molecules." The research was funded by the National Institutes of Health. CNF is supported by the National Science Foundation.

Bill Steele | Cornell News
Further information:
http://www.hgc.cornell.edu/index.html
http://www.news.cornell.edu/releases/May02/entropic.ws.html
http://www.news.cornell.edu/releases/Sept02/One_step_separation.avi

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>