Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure reveals details of cell’s cargo-carriers

19.09.2002


Using x-ray crystallography, researchers have produced the first images of a large molecular complex that helps shape and load the small, bubble-like vesicles that transport newly formed proteins in the cell. Understanding vesicle "budding" is one of the prerequisites for learning how proteins and other molecules are routed to their correct destinations in the cell.



In an article published in the September 19, 2002, issue of the journal Nature, Howard Hughes Medical Institute (HHMI) investigator Jonathan Goldberg, Xiping Bi and Richard Corpina at Memorial Sloan-Kettering Cancer Center unveil the intricate architecture of the "pre-budding complex," which is a set of proteins that participates in the formation of vesicles on the cell’s endoplasmic reticulum (ER). The pre-budding complex is the triggering component of a protein coat called COPII that grabs a section of the ER membrane, pinches it off to form the vesicle and packages the protein cargo to be transported.

"The structure developed by Bi, Corpina and Goldberg makes an important contribution to the understanding of vesicle formation -- a process central to the transport of newly formed proteins," said HHMI investigator Randy Schekman, a pioneer in vesicle studies at the University of California, Berkeley. "It illuminates in detail the mechanism by which the core complex of the COPII protein coat assembles on the ER membrane to initiate the process of membrane cargo capture and vesicle budding." Schekman and James Rothman of Memorial Sloan-Kettering Cancer Center, working independently, have identified many of the fundamental details of protein transport and secretion.


Goldberg said the entire pre-budding complex was considered an important structure to solve because of COPII’s role in protein transport. "What makes the COPII coat unique is that encoded in its proteins is much of the information that tells it to go to the endoplasmic reticulum and which cargo to take up from the ER," said Goldberg. "Also, COPII selects the appropriate fusion machinery, to ensure that the vesicle fuses with its correct target, a structure called the Golgi complex."

In order to understand the process of vesicle formation and transport in molecular terms, one must begin with the initiating event -- with the multi-component pre-budding complex, Goldberg said. "We had to get a clear structural picture of the intact particle so that we can understand the first event in budding, which begins the process of selecting the protein cargo," he said.

Bi, Corpina and Goldberg produced crystals of the entire complex and analyzed the structures of the proteins using x-ray crystallography. Their studies revealed how each of the components of the complex works: A component called Sar1 launches the budding process by anchoring itself to the ER membrane. Sar1 accomplishes this feat by changing its shape through a chemical reaction called GTP binding.

This shape change also enables Sar1-GTP to recruit a second component called Sec23/24, which attaches to form the pre-budding complex, Sec23/24-Sar1. The structure produced by Goldberg and his colleagues reveals how the change in Sar1’s shape enables Sec23/24 to recognize Sar1 and attach to it.

The scientists discovered that the pre-budding complex has a concave surface that hugs the ER membrane, conforming to the spherical shape that the vesicle will ultimately assume. According to Schekman, "the structure reveals the mechanism by which the complex anchors to the ER membrane and how its curvature might impart curvature to the membrane; and in doing so initiate the shape change that accompanies vesicle budding."

Goldberg’s group also identified the part of the complex that faces away from the ER membrane, which includes components that attract another molecule that knits together, or "polymerizes," the coat, pinching off the vesicle from the ER membrane like a mold. The new structure hints at how the coat disassembles itself by, in effect, "breaking the mold" around the vesicle, and freeing it to carry its protein cargo away to be released at the right place in the cell.

Now that they have solved the structure of the pre-budding complex, Goldberg and his colleagues can begin to explore another central question -- how do the vesicles "know" which proteins to take on as cargo?

"We suspect -- and it is a model that Randy Schekman put forward several years ago -- that the COPII coat is selecting many of the proteins directly," said Goldberg. "As we explore the coat structure further, I suspect we will see lots of binding-site ’ crevices’ that specific cargo can plug into and thereby enter the vesicle. So, our next task is to look for those crevices."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>