Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA’s oscillating double helix hinders electrical conduction

11.09.2002


DNA has an oscillating double-helix structure. This oscillating means that the DNA molecules conduct electricity much less well than was previously thought. Ultrafast cameras were one of the devices the researchers from Amsterdam used to demonstrate this.



It turns out the DNA does not have a rigid regular structure as stated in textbooks. In reality the double helix of DNA forms a very dynamic chaotic system. The rigid structure in textbooks should be regarded as the average position of many structures taken over a period of time.

The Amsterdam researchers showed that the chaotic movements limit the electrical conductivity properties of DNA. Electrical conductivity, even if it is imperfect, is of vital importance for the cell. For example, the cell uses electrons from the charge transfer in DNA to repair damaged bonds.


According to the researchers the electrical conductivity would be much better if DNA had a fixed double-helix structure in which the individual building blocks were neatly stacked on top of each other.

The results have consequences for scientists who are developing new molecular microelectronics. In this sort of experimental electronics the DNA molecules would have to be able to initiate a range of reactions by means of charge transfer. The electronics specialists must now take the inefficient electrical conductivity of DNA into consideration.

The DNA examined by researchers included a piece of DNA with the form of a hair clip. It is similar to an important piece of RNA in the HIV virus. Researchers incorporated fluorescent molecule groups in a very specific manner. They then bombarded the piece of DNA with extremely short laser pulses. A special type of camera registered how the molecule fluoresced.

The experimental set-up of the Amsterdam researchers can observe movements or vibrations which occur in one millionth of a millionth of a second. Or put scientifically the set-up has a resolution of a picosecond. To put this into perspective: normal film cameras take 24 pictures per second and only detect the vibration if it lasts longer than 0.02 seconds.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>